@article{SIGMA_2006_2_a7,
author = {Sergey Shadchin},
title = {Status {Report} on the {Instanton} {Counting}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a7/}
}
Sergey Shadchin. Status Report on the Instanton Counting. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a7/
[1] Baulieu L., Singer I. M., “Topological Yang–Mills symmetry”, Nucl. Phys. B, Proc. Suppl., 5 (1988), 12–19 | DOI | MR
[2] Duistermaat J. J., Heckman G. J., “On the variation in the cohomology in the symplectic form of the reduced phase space”, Invent. Math., 69 (1982), 259–269 | DOI | MR
[3] Erlich J., Naqvi A., Randall L., “The Coulomb branch of $\mathcal{N}=2$ supersymmetric product group theories from branes”, Phys. Rev. D, 58 (1998), 046002, 10 pp., ages ; arXiv:hep-th/9801108 | DOI | MR
[4] Katz S., Mayr P., Vafa C., “Mirror symmetry and exact solution of $4d$ $n=2$ gauge theories. I”, Adv. Theor. Math. Phys., 1 (1998), 53–114 ; arXiv:hep-th/9706110 | MR
[5] Katz S., Klemm A., Vafa C., “Geometric engineering of quantum field theories”, Nucl. Phys. B, 497 (1997), 173–195 ; arXiv:hep-th/9609239 | DOI | MR | Zbl
[6] Losev A., Marshakov A., Nekrasov N., Small instantons, little strings and free fermions, arXiv:hep-th/0302191
[7] Mariño M., Wyllard N., “A note on instanton counting for $\mathcal N=2$ gauge theories with classical gauge groups”, JHEP, 05 (2004), paper 021, 23 pp., ages ; arXiv:hep-th/0404125 | MR
[8] Nekrasov N., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2004), 831–864 ; arXiv:hep-th/0206161 | MR
[9] Nekrasov N., Okounkov A., Seiberg–Witten theory and random partitions, arXiv:hep-th/0306238 | MR
[10] Nekrasov N., Shadchin S., “ABCD of instantons”, Comm. Math. Phys., 253 (2004), 359–391 ; arXiv:hep-th/0404225 | DOI | MR
[11] Seiberg N., “Supersymmetry and nonperturbative beta functions”, Phys. Lett. B, 206 (1988), 75–87 | DOI | MR
[12] Seiberg N., Witten E., “Electric-magnetic duality, monopole condensation, and confinement in $\mathcal N=2$ supersymmetric Yang–Mills theory”, Nucl. Phys. B, 426 (1994), 19–52 ; arXiv:hep-th/9407087 | DOI | MR | Zbl
[13] Seiberg N., Witten E., “Monopoles, duality and chiral symmetry breaking in $\mathcal N=2$ supersymmetric QCD”, Nucl. Phys. B, 431 (1994), 484–550 ; arXiv:hep-th/9408099 | DOI | MR | Zbl
[14] Shadchin S., Cubic curves from instanton counting, arXiv:hep-th/0511132 | MR
[15] Shadchin S., On certain aspects of string theory/gauge theory correspondence, PhD Thesis, Université Paris-Sud, Orsay, France, 2005; arXiv:hep-th/0502180
[16] Shadchin S., “Saddle point equations in Seiberg–Witten theory”, JHEP, 10 (2004), paper 033, 38 pp., ages ; arXiv:hep-th/0408066 | MR
[17] Witten E., Introduction to topological quantum field theories, Lectures at the Workshop on Topological Methods in Physics ICTP, Trieste, Italy (June 1990)
[18] Witten E., “Topological quantum field theory”, Comm. Math. Phys., 117 (1988), 353–386 | DOI | MR | Zbl
[19] Witten E., “Solutions of four-dimensional field theories via M-theory”, Nucl. Phys. B, 500 (1997), 3–42 ; arXiv:hep-th/9703166 | DOI | MR | Zbl
[20] Witten E., Donagi R., “Supersymmetric Yang–Mills systems and integrable systems”, Nucl. Phys. B, 460 (1996), 299–334 ; arXiv:hep-th/9510101 | DOI | MR | Zbl