Status Report on the Instanton Counting
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The non-perturbative behavior of the $\mathcal N=2$ supersymmetric Yang–Mills theories is both highly non-trivial and tractable. In the last three years the valuable progress was achieved in the instanton counting, the direct evaluation of the low-energy effective Wilsonian action of the theory. The localization technique together with the Lorentz deformation of the action provides an elegant way to reduce functional integrals, representing the effective action, to some finite dimensional contour integrals. These integrals, in their turn, can be converted into some difference equations which define the Seiberg–Witten curves, the main ingredient of another approach to the non-perturbative computations in the $\mathcal N=2$ super Yang–Mills theories. Almost all models with classical gauge groups, allowed by the asymptotic freedom condition can be treated in such a way. In my talk I explain the localization approach to the problem, its relation to the Seiberg–Witten approach and finally I give a review of some interesting results.
Keywords: instanton counting; Seiberg–Witten theory.
@article{SIGMA_2006_2_a7,
     author = {Sergey Shadchin},
     title = {Status {Report} on the {Instanton} {Counting}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a7/}
}
TY  - JOUR
AU  - Sergey Shadchin
TI  - Status Report on the Instanton Counting
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a7/
LA  - en
ID  - SIGMA_2006_2_a7
ER  - 
%0 Journal Article
%A Sergey Shadchin
%T Status Report on the Instanton Counting
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a7/
%G en
%F SIGMA_2006_2_a7
Sergey Shadchin. Status Report on the Instanton Counting. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a7/

[1] Baulieu L., Singer I. M., “Topological Yang–Mills symmetry”, Nucl. Phys. B, Proc. Suppl., 5 (1988), 12–19 | DOI | MR

[2] Duistermaat J. J., Heckman G. J., “On the variation in the cohomology in the symplectic form of the reduced phase space”, Invent. Math., 69 (1982), 259–269 | DOI | MR

[3] Erlich J., Naqvi A., Randall L., “The Coulomb branch of $\mathcal{N}=2$ supersymmetric product group theories from branes”, Phys. Rev. D, 58 (1998), 046002, 10 pp., ages ; arXiv:hep-th/9801108 | DOI | MR

[4] Katz S., Mayr P., Vafa C., “Mirror symmetry and exact solution of $4d$ $n=2$ gauge theories. I”, Adv. Theor. Math. Phys., 1 (1998), 53–114 ; arXiv:hep-th/9706110 | MR

[5] Katz S., Klemm A., Vafa C., “Geometric engineering of quantum field theories”, Nucl. Phys. B, 497 (1997), 173–195 ; arXiv:hep-th/9609239 | DOI | MR | Zbl

[6] Losev A., Marshakov A., Nekrasov N., Small instantons, little strings and free fermions, arXiv:hep-th/0302191

[7] Mariño M., Wyllard N., “A note on instanton counting for $\mathcal N=2$ gauge theories with classical gauge groups”, JHEP, 05 (2004), paper 021, 23 pp., ages ; arXiv:hep-th/0404125 | MR

[8] Nekrasov N., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2004), 831–864 ; arXiv:hep-th/0206161 | MR

[9] Nekrasov N., Okounkov A., Seiberg–Witten theory and random partitions, arXiv:hep-th/0306238 | MR

[10] Nekrasov N., Shadchin S., “ABCD of instantons”, Comm. Math. Phys., 253 (2004), 359–391 ; arXiv:hep-th/0404225 | DOI | MR

[11] Seiberg N., “Supersymmetry and nonperturbative beta functions”, Phys. Lett. B, 206 (1988), 75–87 | DOI | MR

[12] Seiberg N., Witten E., “Electric-magnetic duality, monopole condensation, and confinement in $\mathcal N=2$ supersymmetric Yang–Mills theory”, Nucl. Phys. B, 426 (1994), 19–52 ; arXiv:hep-th/9407087 | DOI | MR | Zbl

[13] Seiberg N., Witten E., “Monopoles, duality and chiral symmetry breaking in $\mathcal N=2$ supersymmetric QCD”, Nucl. Phys. B, 431 (1994), 484–550 ; arXiv:hep-th/9408099 | DOI | MR | Zbl

[14] Shadchin S., Cubic curves from instanton counting, arXiv:hep-th/0511132 | MR

[15] Shadchin S., On certain aspects of string theory/gauge theory correspondence, PhD Thesis, Université Paris-Sud, Orsay, France, 2005; arXiv:hep-th/0502180

[16] Shadchin S., “Saddle point equations in Seiberg–Witten theory”, JHEP, 10 (2004), paper 033, 38 pp., ages ; arXiv:hep-th/0408066 | MR

[17] Witten E., Introduction to topological quantum field theories, Lectures at the Workshop on Topological Methods in Physics ICTP, Trieste, Italy (June 1990)

[18] Witten E., “Topological quantum field theory”, Comm. Math. Phys., 117 (1988), 353–386 | DOI | MR | Zbl

[19] Witten E., “Solutions of four-dimensional field theories via M-theory”, Nucl. Phys. B, 500 (1997), 3–42 ; arXiv:hep-th/9703166 | DOI | MR | Zbl

[20] Witten E., Donagi R., “Supersymmetric Yang–Mills systems and integrable systems”, Nucl. Phys. B, 460 (1996), 299–334 ; arXiv:hep-th/9510101 | DOI | MR | Zbl