On a Negative Flow of the AKNS Hierarchy and Its Relation to a Two-Component Camassa–Holm Equation
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Different gauge copies of the Ablowitz–Kaup–Newell–Segur (AKNS) model labeled by an angle $\theta$ are constructed and then reduced to the two-component Camassa–Holm model. Only three different independent classes of reductions are encountered corresponding to the angle $\theta$ being 0, $\pi/2$ or taking any value in the interval $0\theta\pi/2$. This construction induces Bäcklund transformations between solutions of the two-component Camassa–Holm model associated with different classes of reduction.
Keywords: integrable hierarchies; Camassa–Holm equation; Bäcklund transformation.
@article{SIGMA_2006_2_a69,
     author = {Henrik Aratyn and Jose Francisco Gomes and Abraham H. Zimerman},
     title = {On {a~Negative} {Flow} of the {AKNS} {Hierarchy} and {Its} {Relation} to {a~Two-Component} {Camassa{\textendash}Holm} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a69/}
}
TY  - JOUR
AU  - Henrik Aratyn
AU  - Jose Francisco Gomes
AU  - Abraham H. Zimerman
TI  - On a Negative Flow of the AKNS Hierarchy and Its Relation to a Two-Component Camassa–Holm Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a69/
LA  - en
ID  - SIGMA_2006_2_a69
ER  - 
%0 Journal Article
%A Henrik Aratyn
%A Jose Francisco Gomes
%A Abraham H. Zimerman
%T On a Negative Flow of the AKNS Hierarchy and Its Relation to a Two-Component Camassa–Holm Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a69/
%G en
%F SIGMA_2006_2_a69
Henrik Aratyn; Jose Francisco Gomes; Abraham H. Zimerman. On a Negative Flow of the AKNS Hierarchy and Its Relation to a Two-Component Camassa–Holm Equation. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a69/

[1] Aratyn H., Gomes J. F., Zimerman A. H., “Integrable hierarchy for multidimensional Toda equations and topological-anti-topological fusion”, J. Geom. Phys., 46 (2003), 21–47 ; Erratum J. Geom. Phys., 46:2 (2003), 201–201 ; hep-th/0107056 | DOI | MR | Zbl | DOI | MR

[2] Chodos A., “Simple connection between conservation laws in the Korteweg–de Vries and sine-Gordon systems”, Phys. Rev. D, 21 (1980), 2818–2822 | DOI | MR

[3] Olive D., Turok N., “Local conserved densities and zero curvature conditions for Toda lattice field theories”, Nuclear Phys., 257 (1985), 277–301 | DOI | MR

[4] Eguchi T., Yang S. K., “Deformations of conformal field theories and soliton equations”, Phys. Lett. B, 224 (1989), 373–377 | DOI | MR

[5] Tracy C. A., Widow H., “Fredholm determinants and the mKdV/sinh-Gordon hierarchies”, Comm. Math. Phys., 179 (1996), 1–9 ; solv-int/9506006 | DOI | MR

[6] Haak G., “Negative flows of the potential KP-hierarchy”, Trans. Amer. Math. Soc., 348 (1996), 375–390 | DOI | MR | Zbl

[7] Dorfmeister J., Gradl H., Szmigielski J., “Systems of PDEs obtained from factorization in loop groups”, Acta Appl. Math., 53 (1998), 1–58 ; solv-int/9801009 | DOI | MR | Zbl

[8] Aratyn H., Ferreira L. A., Gomes J. F., Zimerman A. H., “The complex sine-Gordon equation as a symmetry flow of the AKNS hierarchy”, J. Phys. A: Math. Gen., 33 (2000), L331–L337 ; arXiv:nlin.SI/0007002 | DOI | MR | Zbl

[9] Camassa R., Holm D., “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71 (1993), 1661–1664 ; . patt-sol/9305002 | DOI | MR | Zbl

[10] Fokas A., Fuchssteiner B., “Symplectic structures, their Bäcklund transformation and hereditary symmetries”, Phys. D, 4 (1981), 47–66 | DOI | MR

[11] Chen M., Liu S. Q., Zhang Y., “A two-component generalization of the Camassa–Holm equation and its solutions”, Lett. Math. Phys., 75 (2006), 1–15 ; arXiv:nlin.SI/0501028 | DOI | MR | Zbl

[12] Liu S. Q., Zhang Y.,, “Deformations of semisimple bihamiltonian structures of hydrodynamic type”, J. Geom. Phys., 54 (2005), 427–453 ; math.DG/0405146 | DOI | MR | Zbl

[13] Falqui G., “On a Camassa–Holm type equation with two dependent variables”, J. Phys. A: Math. Gen., 39 (2006), 327–342 ; nlin.SI/0505059 | DOI | MR | Zbl

[14] Shabat A. B., Martinez Alonso L., “On the prolongation of a hierarchy of hydrodynamic chains”, New Trends in Integrability and Partial Solvability, Proceedings of the NATO Advanced Research Workshop (2002, Cadiz, Spain), NATO Sci. Ser. II Math. Phys. Chem., 132, eds. A. B. Shabat et al., Kluwer Academic Publishers, Dordrecht, 2004, 263–280 | MR | Zbl

[15] Adler V. E., Shabat A. B., Dressing chain for the acoustic spectral problem, nlin.SI/0604008

[16] Ivanov R. I., “Extended Camassa–Holm hierarchy and conserved quantities”, Zeitschrift fur Naturforschung A, 61 (2006), 133–138; nlin.SI/0601066

[17] Martinez Alonso L., Shabat A. B., “Hydrodynamic reductions and solutions of a universal hierarchy”, Theoret. and Math. Phys., 140:2 (2004), 1073–1085 ; nlin.SI/0312043 | DOI | MR | Zbl

[18] Shabat A. B., “Universal solitonic hierarchy”, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 614–624 | DOI | MR

[19] Aratyn H., Gomes J. F., Zimerman A. H., “On negative flows of the AKNS hierarchy and a class of deformations of bihamiltonian structure of hydrodynamic type”, J. Phys. A: Math. Gen., 39 (2006), 1099–1114 ; nlin.si/0507062 | DOI | MR | Zbl

[20] Wu Ch.-Zh., “On solutions of two-component Camassa–Holm system”, J. Math. Phys., 47 (2006), 083513, 11 pp., ages | DOI | MR

[21] Aratyn H., van de Leur J., Clifford algebra derivations of tau functions for two-dimensional integrable models with positive and negative flows, nlin.SI/0605027