Integrable Models of Interaction of Matter with Radiation
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The simplified models of interaction of charged matter with resonance modes of radiation generalizing the well-known Jaynes–Cummings and Dicke models are considered. It is found that these new models are integrable for arbitrary numbers of dipole sources and resonance modes of the radiation field. The problem of explicit diagonalisation of corresponding Hamiltonians is discussed.
Keywords: integrability; radiation; Gaudin models.
@article{SIGMA_2006_2_a68,
     author = {Vladimir I. Inozemtsev and Natalia G. Inozemtseva},
     title = {Integrable {Models} of {Interaction} of {Matter} with {Radiation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a68/}
}
TY  - JOUR
AU  - Vladimir I. Inozemtsev
AU  - Natalia G. Inozemtseva
TI  - Integrable Models of Interaction of Matter with Radiation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a68/
LA  - en
ID  - SIGMA_2006_2_a68
ER  - 
%0 Journal Article
%A Vladimir I. Inozemtsev
%A Natalia G. Inozemtseva
%T Integrable Models of Interaction of Matter with Radiation
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a68/
%G en
%F SIGMA_2006_2_a68
Vladimir I. Inozemtsev; Natalia G. Inozemtseva. Integrable Models of Interaction of Matter with Radiation. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a68/

[1] Dicke R., “Coherence in spontaneous radiation processes”, Phys. Rev., 93 (1953), 99–108 | DOI

[2] Cummings F. W., “Stimulated emission of radiation in a single mode”, Phys. Rev. A, 140 (1965), 1051–1062 | DOI

[3] Heitler W., The quantum theory of radiation, New York–Oxford, 1954 | Zbl

[4] Allen L., Eberly J., Optical resonance and two-level atoms, Wiley-Interscience Publication, New York, 1975

[5] Li X., Bei N., “A generalized three-level Jaynes–Cummings model”, Phys. Lett. A, 101 (1984), 169–175 | DOI

[6] Abdel-Hafez A., Obada A., Ahmad M., “$N$-level atom and $N-1$ modes: statistical aspects and interaction with squeezed light”, Phys. Rev. A, 35 (1987), 1634–1647 | DOI

[7] Gaudin M., “Diagonalisation d'une classe d'hamiltoniens de spin”, J. de Physique, 37 (1976), 1087–1098 | DOI | MR

[8] Gaudin M., La fonction d'onde de Bethe, Masson, Paris, 1983 | MR | Zbl

[9] Jurco B., “On quantum integrable models related to nonlinear quantum optics. An algebraic Bethe ansatz approach”, J. Math. Phys., 30 (1989), 1739–1744 | DOI | MR

[10] Dukelsky J., Dussel G. G., Esebbag C., Pittel S., “Exactly solvable models for atom-molecule Hamiltonians”, Phys. Rev. Lett., 93 (2004), 050403, 4 pp., ages ; cond-mat/0406190 | DOI | MR

[11] Kundu A., “Integrable multi-atom matter-radiation models without rotating-wave approximation”, Phys. Lett. A, 350 (2006), 210–213 ; cond-mat/0411166 | DOI | MR

[12] Kuznetsov V. B., “Separation of variables for the $\mathcal D_n$-type periodic Toda lattice”, J. Phys. A: Math. Gen., 30 (1997), 2127–2138 ; solv-int/9701009 | DOI | MR | Zbl