Quantum Entanglement and Projective Ring Geometry
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper explores the basic geometrical properties of the observables characterizing two-qubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the $15 \times 15$ multiplication table of the associated four-dimensional matrices exhibits a so-far-unnoticed geometrical structure that can be regarded as three pencils of lines in the projective plane of order two. In one of the pencils, which we call the kernel, the observables on two lines share a base of Bell states. In the complement of the kernel, the eight vertices/observables are joined by twelve lines which form the edges of a cube. A substantial part of the paper is devoted to showing that the nature of this geometry has much to do with the structure of the projective lines defined over the rings that are the direct product of $n$ copies of the Galois field $GF(2)$, with $n=2,3$ and 4.
Keywords: quantum entanglement; two spin-$\frac12$ particles; finite rings; projective ring lines.
@article{SIGMA_2006_2_a65,
     author = {Michel Planat and Metod Saniga and Maurice R. Kibler},
     title = {Quantum {Entanglement} and {Projective} {Ring} {Geometry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a65/}
}
TY  - JOUR
AU  - Michel Planat
AU  - Metod Saniga
AU  - Maurice R. Kibler
TI  - Quantum Entanglement and Projective Ring Geometry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a65/
LA  - en
ID  - SIGMA_2006_2_a65
ER  - 
%0 Journal Article
%A Michel Planat
%A Metod Saniga
%A Maurice R. Kibler
%T Quantum Entanglement and Projective Ring Geometry
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a65/
%G en
%F SIGMA_2006_2_a65
Michel Planat; Metod Saniga; Maurice R. Kibler. Quantum Entanglement and Projective Ring Geometry. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a65/

[1] Einstein A., Podolsky B., Rosen N., “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev., 47 (1935), 777–780 | DOI | Zbl

[2] Bohm D., Quantum theory, Prentice Hall, New York, 1951

[3] Bell J. S., “On the problem of hidden variables in quantum mechanics”, Rev. Modern Phys., 38 (1966), 447–452 | DOI | MR | Zbl

[4] Kochen S., Specker E. P., “The problem of hidden variables in quantum mechanics”, J. Math. Mech., 17 (1976), 59–88 | MR

[5] Peres A., “Incompatible results of quantum measurements”, Phys. Lett. A, 151 (1990), 107–108 | DOI | MR

[6] Mermin N. D., “Hidden variables and two theorems of John Bell”, Rev. Modern Phys., 65 (1993), 803–815 | DOI | MR

[7] Aspect A., Grangier P., Roger G., “Experimental tests of Bell's inequalities using time-varying analyzers”, Phys. Rev. Lett., 49 (1982), 1804–1807 | DOI | MR

[8] Schrödinger E., “Discussion of probability relations between separated systems”, Proc. Cambridge Phil. Soc., 31 (1935), 555–563 ; 32 (1936), 446–451 | DOI | DOI

[9] Peres A., Quantum theory: concepts and methods, Kluwer Academic Publishers, Dordrecht, 1998 | MR

[10] Bohr N., “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev., 48 (1935), 696–702 | DOI | Zbl

[11] Polster B., A geometrical picture book, Springer, New York, 1998 | MR

[12] Saniga M., Planat M., Minarovjech M., “Projective line over the finite quotient ring $\mathrm{GF}(2)[x]/\langle x^3-x\rangle $ and quantum entanglement: the Mermin “magic” square/pentagram”, Theor. Math. Phys., 151:2 (2007), 625–631 ; quant-ph/0603206 | DOI | MR | Zbl

[13] Aravind P. K., “Quantum mysteries revisited again”, Amer. J. Phys., 72 (2004), 1303–1307 | DOI | MR

[14] Planat M., Rosu H., “Mutually unbiased phase states, phase uncertainties and Gauss sums”, Eur. Phys. J. D: At. Mol. Opt. Phys., 36 (2005), 133–139 ; quant-ph/0506128

[15] Saniga M., Planat M., Rosu H., “Mutually unbiased bases and finite projective planes”, J. Opt. B Quantum Semiclass. Opt., 6 (2004), L19–L20 ; math-ph/0403057 | DOI | MR

[16] Kibler M. R., Planat M., “A SU(2) recipe for mutually unbiased bases”, Internat. J. Modern Phys. B, 20 (2006), 1802–1807 ; quant-ph/0601092 | DOI | MR | Zbl

[17] Lawrence J., Brukner C., Zeilinger A., “Mutually unbiased binary observables sets on $N$ qubits”, Phys. Rev. A, 65 (2002), 032320, 5 pp., ages ; quant-ph/0104012 | DOI

[18] Planat M., Saniga M., “Abstract algebra, projective geometry and time encoding of quantum information”, Proceedings of the ZiF Workshop “Endophysics, Time, Quantum and the Subjective” (January 17–22, 2005, Bielefeld), eds. R. Buccheri, A. C. Elitzur and M. Saniga, World Scientific Publishing, Singapore, 2005, 121–138; quant-ph/0503159

[19] Saniga M., Planat M., “Projective planes over “Galois” double numbers and a geometrical principle of complementarity”, Chaos Solitons Fractals, 36:2 (2008), 374–381 ; math.NT/0601261 | DOI | MR | Zbl

[20] Saniga M., Planat M., “Projective line over the finite quotient ring $\mathrm{GF}(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: theoretical background”, Theor. Math. Phys., 151:1 (2007), 474–481 ; quant-ph/0603051 | DOI | MR | Zbl

[21] Saniga M., Planat M., “On the fine structure of the projective line over $\rm GF(2)\otimes\rm GF(2)\otimes\rm GF(2)$”, Chaos Solitons Fractals, 37:2 (2008), 337–345 ; math.AG/0604307 | DOI | MR | Zbl

[22] Veldkamp F. D., “Geometry over rings”, Handbook of Incidence Geometry, ed. F. Buekenhout, Elsevier, Amsterdam, 1995, 1033–1084 | MR

[23] Fraleigh J. B., A first course in abstract algebra, 5th ed., Addison-Wesley, Reading (MA), 1994, 273–362 | MR

[24] McDonald B. R., Finite rings with identity, Marcel Dekker, New York, 1974 | MR

[25] Raghavendran R., “Finite associative rings”, Compos. Math., 21 (1969), 195–229 | MR | Zbl

[26] Herzer A., “Chain geometries”, Handbook of Incidence Geometry, ed. F. Buekenhout, Elsevier, Amsterdam, 1995, 781–842 | MR

[27] Blunck A., Havlicek H., “Projective representations. I. Projective lines over a ring”, Abh. Math. Sem. Univ. Hamburg, 70 (2000), 287–299 | DOI | MR | Zbl

[28] Blunck A., Havlicek H., “Radical parallelism on projective lines and non-linear models of affine spaces”, Math. Pannon., 14 (2003), 113–127 | MR | Zbl

[29] Havlicek H., “Divisible designs, Laguerre geometry, and beyond”, Quaderni del Seminario Matematico di Brescia, 11 (2006), 1–63; Preprint also available from, here

[30] Törner G., Veldkamp F. D., “Literature on geometry over rings”, J. Geom., 42 (1991), 180–200 | DOI | MR | Zbl

[31] Saniga M., Planat M., Kibler M. R., Pracna P., “A classification of the projective lines over small rings”, Chaos Solitons Fractals, 33:4 (2007), 1095–1102 ; math.AG/0605301 | DOI | MR | Zbl

[32] Kibler M. R., “A group-theoretical approach to the periodic table of chemical elements: old and new developments”, The Mathematics of the Periodic Table, eds. D. H. Rouvray and R. B. King, Nova Science, New York, 2006, 237–263; quant-ph/0503039

[33] Romero J. L., Björk G., Klimov A. B., Sánchez-Soto L. L., “Structure of the sets of mutually unbiased bases for $N$ qubits”, Phys. Rev. A, 72 (2005), 062310–062317 ; quant-ph/0508129 | DOI | MR