@article{SIGMA_2006_2_a64,
author = {Vladimir Dorodnitsyn},
title = {On the {Linearization} of {Second-Order} {Differential} and {Difference} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a64/}
}
Vladimir Dorodnitsyn. On the Linearization of Second-Order Differential and Difference Equations. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a64/
[1] Dorodnitsyn V., Kozlov R., Winternitz P., “Lie group classification of second order difference equations”, J. Math. Phys., 41 (2000), 480–504 | DOI | MR | Zbl
[2] Dorodnitsyn V., Kozlov R., Winternitz P., “Continuous symmetries of Lagrangians and exact solutions of discrete equations”, J. Math. Phys., 45 (2004), 336–359 ; nlin.SI/0307042 | DOI | MR | Zbl
[3] Lie S., “Klassifikation und Integration von gewöhnlichen Differentialgleichunden zwischen $x,y$ die eine Gruppe von Transformationen gestatten”, Math. Ann., 32 (1888), 213–281 | DOI | MR
[4] Noether E., “Invariante Variationsprobleme”, Math.-Phys. Kl., Nachr. Konig. Gesell. Wissen., Heft 2, Göttingen, 1918, 235–257 | Zbl
[5] Dorodnitsyn V.,, “Noether-type theorems for difference equations”, Appl. Numer. Math., 39 (2001), 307–321 | DOI | MR | Zbl
[6] Dorodnitsyn V., The group properties of difference equations, Fizmatlit, Moscow, 2001 (in Russian) | Zbl
[7] Kumei S., Bluman G. W., “When nonlinear differential equations are equivalent to linear differential equations”, SIAM J. Appl. Math., 42 (1982), 1157–1173 | DOI | MR | Zbl
[8] Lie S., “Klassifikation und Integration von gewöhnlichen Differentialgleichunden zwischen $x,y$ die eine Gruppe von Transformationen gestatten. I, II, III, IV”, Reprinted in Lie's Gessamelte Abhandlungen, Vol. 5, Teubner, Leipzig, 1924, 240–310
[9] Ames W. F., Anderson R. L., Dorodnitsyn V.A., Ferapontov E. V., Gazizov R. K., Ibragimov N. H., Svirshchevskii S. R., CRC hand-book of Lie group analysis of differential equations. Vol. I. Symmetries, exact solutions and conservation laws, ed. N. H. Ibragimov, CRC Press, 1994 | MR
[10] Maeda S., “The similarity method for difference equations”, IMA J. Appl. Math., 38 (1987), 129–134 | DOI | MR | Zbl
[11] Byrnes G. B., Sahadevan R., Quispel G. R. W., “Factorizable Lie symmetries and the linearization of difference equations”, Nonlinearity, 8 (1995), 44–59 | DOI | MR