On the Linearization of Second-Order Differential and Difference Equations
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article complements recent results of the papers [J. Math. Phys. 41 (2000), 480; 45 (2004), 336] on the symmetry classification of second-order ordinary difference equations and meshes, as well as the Lagrangian formalism and Noether-type integration technique. It turned out that there exist nonlinear superposition principles for solutions of special second-order ordinary difference equations which possess Lie group symmetries. This superposition springs from the linearization of second-order ordinary difference equations by means of non-point transformations which act simultaneously on equations and meshes. These transformations become some sort of contact transformations in the continuous limit.
Keywords: non-point transformations; second-order ordinary differential and difference equations; linearization; superposition principle.
@article{SIGMA_2006_2_a64,
     author = {Vladimir Dorodnitsyn},
     title = {On the {Linearization} of {Second-Order} {Differential} and {Difference} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a64/}
}
TY  - JOUR
AU  - Vladimir Dorodnitsyn
TI  - On the Linearization of Second-Order Differential and Difference Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a64/
LA  - en
ID  - SIGMA_2006_2_a64
ER  - 
%0 Journal Article
%A Vladimir Dorodnitsyn
%T On the Linearization of Second-Order Differential and Difference Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a64/
%G en
%F SIGMA_2006_2_a64
Vladimir Dorodnitsyn. On the Linearization of Second-Order Differential and Difference Equations. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a64/

[1] Dorodnitsyn V., Kozlov R., Winternitz P., “Lie group classification of second order difference equations”, J. Math. Phys., 41 (2000), 480–504 | DOI | MR | Zbl

[2] Dorodnitsyn V., Kozlov R., Winternitz P., “Continuous symmetries of Lagrangians and exact solutions of discrete equations”, J. Math. Phys., 45 (2004), 336–359 ; nlin.SI/0307042 | DOI | MR | Zbl

[3] Lie S., “Klassifikation und Integration von gewöhnlichen Differentialgleichunden zwischen $x,y$ die eine Gruppe von Transformationen gestatten”, Math. Ann., 32 (1888), 213–281 | DOI | MR

[4] Noether E., “Invariante Variationsprobleme”, Math.-Phys. Kl., Nachr. Konig. Gesell. Wissen., Heft 2, Göttingen, 1918, 235–257 | Zbl

[5] Dorodnitsyn V.,, “Noether-type theorems for difference equations”, Appl. Numer. Math., 39 (2001), 307–321 | DOI | MR | Zbl

[6] Dorodnitsyn V., The group properties of difference equations, Fizmatlit, Moscow, 2001 (in Russian) | Zbl

[7] Kumei S., Bluman G. W., “When nonlinear differential equations are equivalent to linear differential equations”, SIAM J. Appl. Math., 42 (1982), 1157–1173 | DOI | MR | Zbl

[8] Lie S., “Klassifikation und Integration von gewöhnlichen Differentialgleichunden zwischen $x,y$ die eine Gruppe von Transformationen gestatten. I, II, III, IV”, Reprinted in Lie's Gessamelte Abhandlungen, Vol. 5, Teubner, Leipzig, 1924, 240–310

[9] Ames W. F., Anderson R. L., Dorodnitsyn V.A., Ferapontov E. V., Gazizov R. K., Ibragimov N. H., Svirshchevskii S. R., CRC hand-book of Lie group analysis of differential equations. Vol. I. Symmetries, exact solutions and conservation laws, ed. N. H. Ibragimov, CRC Press, 1994 | MR

[10] Maeda S., “The similarity method for difference equations”, IMA J. Appl. Math., 38 (1987), 129–134 | DOI | MR | Zbl

[11] Byrnes G. B., Sahadevan R., Quispel G. R. W., “Factorizable Lie symmetries and the linearization of difference equations”, Nonlinearity, 8 (1995), 44–59 | DOI | MR