@article{SIGMA_2006_2_a63,
author = {Sergei Sakovich},
title = {On {a~{\textquotedblleft}Mysterious{\textquotedblright}} {Case} of {a~Quadratic} {Hamiltonian}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a63/}
}
Sergei Sakovich. On a “Mysterious” Case of a Quadratic Hamiltonian. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a63/
[1] Sokolov V. V., Wolf T., “Integrable quadratic classical Hamiltonians on $so(4)$ and $so(3,1)$”, J. Phys. A: Math. Gen., 39 (2006), 1915–1926 ; nlin.SI/0405066 | DOI | MR | Zbl
[2] Ablowitz M. J., Ramani A., Segur H., “A connection between nonlinear evolution equations and ordinary differential equations of $P$-type. I”, J. Math. Phys., 21 (1980), 715–721 | DOI | MR | Zbl
[3] Ramani A., Grammaticos B., Bountis T., “The Painlevé property and singularity analysis of integrable and non-integrable systems”, Phys. Rep., 180 (1989), 159–245 | DOI | MR
[4] Tsiganov A. V., Goremykin O. V., “Integrable systems on $so(4)$ related with $XXX$ spin chains with boundaries”, J. Phys. A: Math. Gen., 37 (2004), 4843–4849 ; nlin.SI/0310049 | DOI | MR | Zbl
[5] Sokolov V. V., “On a class of quadratic Hamiltonians on $so(4)$”, Dokl. Akad. Nauk, 394 (2004), 602–605 (in Russian) | MR | Zbl
[6] Ramani A., Dorizzi B., Grammaticos B., “Painlevé conjecture revisited”, Phys. Rev. Lett., 49 (1982), 1539–1541 | DOI | MR
[7] Grammaticos B., Dorizzi B., Ramani A., “Integrability of Hamiltonians with third- and fourth-degree polynomial potentials”, J. Math. Phys., 24 (1983), 2289–2295 | DOI | MR | Zbl
[8] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, Cambridge, 1991 | MR | Zbl
[9] Sakovich S. Yu., Tsuchida T., “Symmetrically coupled higher-order nonlinear Schrödinger equations: singularity analysis and integrability”, J. Phys. A: Math. Gen., 33 (2000), 7217–7226 ; nlin.SI/0006004 | DOI | MR | Zbl
[10] Sakovich S. Yu., Tsuchida T., Coupled higher-order nonlinear Schrödinger equations: a new integrable case via the singularity analysis, nlin.SI/0002023