On a “Mysterious” Case of a Quadratic Hamiltonian
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that one of the five cases of a quadratic Hamiltonian, which were recently selected by Sokolov and Wolf who used the Kovalevskaya–Lyapunov test, fails to pass the Painlevé test for integrability.
Keywords: Hamiltonian system; nonintegrability; singularity analysis.
@article{SIGMA_2006_2_a63,
     author = {Sergei Sakovich},
     title = {On {a~{\textquotedblleft}Mysterious{\textquotedblright}} {Case} of {a~Quadratic} {Hamiltonian}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a63/}
}
TY  - JOUR
AU  - Sergei Sakovich
TI  - On a “Mysterious” Case of a Quadratic Hamiltonian
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a63/
LA  - en
ID  - SIGMA_2006_2_a63
ER  - 
%0 Journal Article
%A Sergei Sakovich
%T On a “Mysterious” Case of a Quadratic Hamiltonian
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a63/
%G en
%F SIGMA_2006_2_a63
Sergei Sakovich. On a “Mysterious” Case of a Quadratic Hamiltonian. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a63/

[1] Sokolov V. V., Wolf T., “Integrable quadratic classical Hamiltonians on $so(4)$ and $so(3,1)$”, J. Phys. A: Math. Gen., 39 (2006), 1915–1926 ; nlin.SI/0405066 | DOI | MR | Zbl

[2] Ablowitz M. J., Ramani A., Segur H., “A connection between nonlinear evolution equations and ordinary differential equations of $P$-type. I”, J. Math. Phys., 21 (1980), 715–721 | DOI | MR | Zbl

[3] Ramani A., Grammaticos B., Bountis T., “The Painlevé property and singularity analysis of integrable and non-integrable systems”, Phys. Rep., 180 (1989), 159–245 | DOI | MR

[4] Tsiganov A. V., Goremykin O. V., “Integrable systems on $so(4)$ related with $XXX$ spin chains with boundaries”, J. Phys. A: Math. Gen., 37 (2004), 4843–4849 ; nlin.SI/0310049 | DOI | MR | Zbl

[5] Sokolov V. V., “On a class of quadratic Hamiltonians on $so(4)$”, Dokl. Akad. Nauk, 394 (2004), 602–605 (in Russian) | MR | Zbl

[6] Ramani A., Dorizzi B., Grammaticos B., “Painlevé conjecture revisited”, Phys. Rev. Lett., 49 (1982), 1539–1541 | DOI | MR

[7] Grammaticos B., Dorizzi B., Ramani A., “Integrability of Hamiltonians with third- and fourth-degree polynomial potentials”, J. Math. Phys., 24 (1983), 2289–2295 | DOI | MR | Zbl

[8] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[9] Sakovich S. Yu., Tsuchida T., “Symmetrically coupled higher-order nonlinear Schrödinger equations: singularity analysis and integrability”, J. Phys. A: Math. Gen., 33 (2000), 7217–7226 ; nlin.SI/0006004 | DOI | MR | Zbl

[10] Sakovich S. Yu., Tsuchida T., Coupled higher-order nonlinear Schrödinger equations: a new integrable case via the singularity analysis, nlin.SI/0002023