@article{SIGMA_2006_2_a61,
author = {Sadollah Nasiri},
title = {Quantum {Potential} and {Symmetries} in {Extended} {Phase} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a61/}
}
Sadollah Nasiri. Quantum Potential and Symmetries in Extended Phase Space. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a61/
[1] Holland P. R., The quantum theory of motion, Cambridge University Press, 1993, 68–89 | MR
[2] Sakurai J. J., Modern quantum mechanics, Addison-Wesley, 1985, 97–109
[3] Madelung E., “The hydrodynamical picture of quantum theory”, Z. Phys., 40 (1926), 322–326 | Zbl
[4] Takabayasi T., “The formulation of quantum mechanics in terms of ensemble in phase space”, Progr. Theoret. Phys., 11 (1954), 341–373 | DOI | MR | Zbl
[5] Muga J. G., Sala R., Snider R. F., “Comparison of classical and quantum evolution of phase space distribution functions”, Phys. Scripta, 47 (1993), 732–739 | DOI
[6] Brown M. R., The quantum poptential: the breakdown of classical symplectic symmetry and the energy of localization and dispersion, arXiv:quant-ph/9703007
[7] Brown M. R., Hiley B. J., Schrödinger revisited: an algebraic approach, arXiv:quant-ph/0005026
[8] Bohm D., Hiley B. J., “On the intuitive understanding of nonlocality and implied by quantum theory”, Found. Phys., 5 (1975), 93–109 | DOI
[9] Maroney O., Hiley B. J., “Quantum teleportation understood through the Bohm interpretation”, Found. Phys., 29 (1999), 1403–1415 | DOI | MR
[10] Bohm D., Hiley B. J., The undivided universe: the ontological interpretation of quantum theory, Routledge, London, 1993 | MR
[11] Holland P. R., “Quantum back-reaction and the particle law of motion”, J. Phys. A: Math. Gen., 39 (2006), 559–564 | DOI | MR | Zbl
[12] Shojai F., Shojai A., “Constraints algebra and equation of motion in Bohmian interpretation of quantum gravity”, Class. Quant. Grav., 21 (2004), 1–9 ; arXiv:gr-qc/0409035 | DOI | MR | Zbl
[13] Carroll R., Fluctuations, gravity, and the quantum potential, arXiv:gr-qc/0501045
[14] Carroll R., Some fundamental aspects of a quantum potential, arXiv:quant-ph/0506075
[15] Wigner E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40 (1932), 749–759 | DOI
[16] Moyal J. E., “Quantum mechanics as a statistical theory”, Proc. Camb. Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl
[17] Hillery M., O'Connell R. F., Scully M. O., Wigner E. P., “Distribution functions in physics: fundamentals”, Phys. Rep. C, 106 (1984), 121–167 | DOI | MR
[18] Mehta C. L., “Classical functions corresponding to given quantum operators”, J. Phys. A, 1 (1968), 385–392 | DOI | MR
[19] Agarval G., Wolf E., “Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators”, Phys. Rev. D, 2 (1970), 2161–2186 | DOI | MR
[20] Han D., Kim Y. S., Noz M. E., “Linear canonical transformations of coherent and squeezed states in the Wigner phase space. II. Quantitative analysis”, Phys. Rev. A, 40 (1989), 902–912 | DOI | MR
[21] Kim Y. S., Wigner E. P., “Canonical transformation in quantum mechanics”, Amer. J. Phys., 58 (1990), 439–448 | DOI
[22] Jannussis A., Patargias N., Leodaris A., Phillippakis T., Streclas A., Papatheos V., Some remarks on the nonnegative quantum mechanical distribution functions, Preprint, Dept. Theor. Phys. Univ. of Patras, 1982 | MR
[23] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization”, Ann. Physics, 111 (1978), 61–110 | DOI | MR | Zbl
[24] Torres-Vega G., Ferderick J. H., “Quantum mechanics in phase space: new approaches to the correspondence principle”, J. Chem. Phys., 93 (1990), 8862–8874 | DOI | MR
[25] Torres-Vega G., Ferderick J. H., “A quantum mechanical representation in phase space”, J. Chem. Phys., 98 (1993), 3103–3120 | DOI
[26] de Gosson M. A., Schrödinger equation in phase espace and deformation quantization, arXiv:math.SG/0504013
[27] Bolivar A. O., Quantum-classical correspondence. Dynamical quantization and the classical limit, Frontiers Collection, Springer, Berlin, 2004 | MR | Zbl
[28] de Gosson M. A., The principles of Newtonian and quantum mechanics, the need for Planck's constant, $\hbar$, Blekinge Institute of Technology, Sweden, 2001
[29] Sobouti Y., Nasiri S., “A phase space formulation of quantum state functions”, Internat. J. Modern Phys. B, 7 (1993), 3255–3272 | DOI | MR
[30] Goldstein H., Classical mechanics, Addison-Wesley, London, 1980 | MR | Zbl
[31] Merzbacher E., Quantum mechanics, Wiley Interscience, New York, 1970, 341–350 | MR