On the Gaussian Random Matrix Ensembles with Additional Symmetry Conditions
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Gaussian unitary random matrix ensembles satisfying some additional symmetry conditions are considered. The effect of these conditions on the limiting normalized counting measures and correlation functions is studied.
Keywords: random matrices; Gaussian unitary ensemble.
@article{SIGMA_2006_2_a6,
     author = {Vladimir Vasilchuk},
     title = {On the {Gaussian} {Random} {Matrix} {Ensembles} with {Additional} {Symmetry} {Conditions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a6/}
}
TY  - JOUR
AU  - Vladimir Vasilchuk
TI  - On the Gaussian Random Matrix Ensembles with Additional Symmetry Conditions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a6/
LA  - en
ID  - SIGMA_2006_2_a6
ER  - 
%0 Journal Article
%A Vladimir Vasilchuk
%T On the Gaussian Random Matrix Ensembles with Additional Symmetry Conditions
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a6/
%G en
%F SIGMA_2006_2_a6
Vladimir Vasilchuk. On the Gaussian Random Matrix Ensembles with Additional Symmetry Conditions. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a6/

[1] Bellissard J., Magnen J., Rivasseau V., “Supersymmetric analysis of a simplified two-dimensional Anderson model at small disorder”, Markov Process. Related Fields, 9 (2003), 1–30 | MR

[2] Disertori M., “Density of states for GUE through supersymmetric approach”, Rev. Math. Phys., 16:9 (2004), 1191–1225 | DOI | MR | Zbl

[3] Disertori M., Rivasseau V., Random matrices and the Anderson model, arXiv:math-ph/0310021 | MR

[4] Khorunzhenko B., Khorunzhy A., Pastur L., “Asymptotic properties of large random matrices with independent entries”, J. Math. Phys, 37 (1996), 5033–5060 | DOI | MR

[5] Khorunzhenko B., Khorunzhy A., Pastur L., Shcherbina M., “Large-$n$ limit in the statistical mechanics and the spectral theory of disordered systems”, Phase Transitions and Critical Phenomena, eds. C. Dommb and J. Lebowitz, Academic Press, London, 1992, 74–239

[6] Khorunzhy A., “Eigenvalue distribution of large random matrices with correlated entries”, Mat. Fiz. Anal. Geom., 3 (1996), 80–101 | MR | Zbl

[7] Marchenko V. A., Pastur L. A., “Distribution of eigenvalues for some sets of random matrices”, Math. USSR Sb., 1:4 (1967), 457–483 | DOI | Zbl

[8] Pastur L., Khorunzhy A., Vasilchuk V., “On an asymptotic property of the spectrum of the sum of one-dimensional independent random operators”, Dopov. Nats. Akad. Nauk Ukrainy, 2 (1995), 27–30 (in Russian) | MR

[9] Schenker J. H., Schulz-Balde H., Semicircle law and freeness for random matrices with symmetries or correlation, arXiv:math-ph/0505003