@article{SIGMA_2006_2_a6,
author = {Vladimir Vasilchuk},
title = {On the {Gaussian} {Random} {Matrix} {Ensembles} with {Additional} {Symmetry} {Conditions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a6/}
}
Vladimir Vasilchuk. On the Gaussian Random Matrix Ensembles with Additional Symmetry Conditions. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a6/
[1] Bellissard J., Magnen J., Rivasseau V., “Supersymmetric analysis of a simplified two-dimensional Anderson model at small disorder”, Markov Process. Related Fields, 9 (2003), 1–30 | MR
[2] Disertori M., “Density of states for GUE through supersymmetric approach”, Rev. Math. Phys., 16:9 (2004), 1191–1225 | DOI | MR | Zbl
[3] Disertori M., Rivasseau V., Random matrices and the Anderson model, arXiv:math-ph/0310021 | MR
[4] Khorunzhenko B., Khorunzhy A., Pastur L., “Asymptotic properties of large random matrices with independent entries”, J. Math. Phys, 37 (1996), 5033–5060 | DOI | MR
[5] Khorunzhenko B., Khorunzhy A., Pastur L., Shcherbina M., “Large-$n$ limit in the statistical mechanics and the spectral theory of disordered systems”, Phase Transitions and Critical Phenomena, eds. C. Dommb and J. Lebowitz, Academic Press, London, 1992, 74–239
[6] Khorunzhy A., “Eigenvalue distribution of large random matrices with correlated entries”, Mat. Fiz. Anal. Geom., 3 (1996), 80–101 | MR | Zbl
[7] Marchenko V. A., Pastur L. A., “Distribution of eigenvalues for some sets of random matrices”, Math. USSR Sb., 1:4 (1967), 457–483 | DOI | Zbl
[8] Pastur L., Khorunzhy A., Vasilchuk V., “On an asymptotic property of the spectrum of the sum of one-dimensional independent random operators”, Dopov. Nats. Akad. Nauk Ukrainy, 2 (1995), 27–30 (in Russian) | MR
[9] Schenker J. H., Schulz-Balde H., Semicircle law and freeness for random matrices with symmetries or correlation, arXiv:math-ph/0505003