$q$-Deformed KP Hierarchy and $q$-Deformed Constrained KP Hierarchy
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the determinant representation of gauge transformation operator, we have shown that the general form of $\tau$ function of the $q$-KP hierarchy is a $q$-deformed generalized Wronskian, which includes the $q$-deformed Wronskian as a special case. On the basis of these, we study the $q$-deformed constrained KP ($q$-cKP) hierarchy, i.e. $l$-constraints of $q$-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of $q$-cKP hierarchy can be represented by $q$-deformed Wronskian determinant of functions satisfying a set of linear $q$-partial differential equations with constant coefficients. We obtained additional conditions for these functions imposed by the constraints. In particular, the effects of $q$-deformation ($q$-effects) in single $q$-soliton from the simplest $\tau$ function of the $q$-KP hierarchy and in multi-$q$-soliton from one-component $q$-cKP hierarchy, and their dependence of $x$ and $q$, were also presented. Finally, we observe that $q$-soliton tends to the usual soliton of the KP equation when $x\to0$ and $q\to1$, simultaneously.
Keywords: $q$-deformation; $\tau$ function; Gauge transformation operator; $q$-KP hierarchy; $q$-cKP hierarchy.
@article{SIGMA_2006_2_a59,
     author = {Jingsong He and Yinghua Li and Yi Cheng},
     title = {$q${-Deformed} {KP} {Hierarchy} and $q${-Deformed} {Constrained} {KP} {Hierarchy}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a59/}
}
TY  - JOUR
AU  - Jingsong He
AU  - Yinghua Li
AU  - Yi Cheng
TI  - $q$-Deformed KP Hierarchy and $q$-Deformed Constrained KP Hierarchy
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a59/
LA  - en
ID  - SIGMA_2006_2_a59
ER  - 
%0 Journal Article
%A Jingsong He
%A Yinghua Li
%A Yi Cheng
%T $q$-Deformed KP Hierarchy and $q$-Deformed Constrained KP Hierarchy
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a59/
%G en
%F SIGMA_2006_2_a59
Jingsong He; Yinghua Li; Yi Cheng. $q$-Deformed KP Hierarchy and $q$-Deformed Constrained KP Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a59/

[1] Klimyk A., Schmüdgen K., “$q$-calculus”, Quantum Groups and Their Represntaions, Chapter 2, Springer, Berlin, 1997, 37–52 | MR

[2] Kac V., Cheung P., Quantum calculus, Springer-Verlag, New York, 2002 | MR

[3] Exton H., $q$-hypergeometric functions and applications, Ellis Horwood Ltd., Chichester, 1983 | MR | Zbl

[4] Andrews G. E., $q$-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, American Mathematical Society, Providence, 1986 | MR

[5] Jimbo M., Yang–Baxter equation in integrable systems, Advanced Series in Mathematical Physics, 10, World Scientific, Singapore, 1990 | MR

[6] Connes A., Noncommutative geometry, Academic Press, San Diego–London, 1994 | MR | Zbl

[7] Majid S., “Free braided differential calculus, braided binomial theorem, and the braided exponential map”, J. Math. Phys., 34 (1993), 4843–4856 ; arXiv:hep-th/9302076 | DOI | MR | Zbl

[8] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995, § 10.4 | MR | Zbl

[9] Zhang D.H., “Quantum deformation of KdV hierarchies and their infinitely many conservation laws”, J. Phys. A: Math. Gen., 26 (1993), 2389–2407 | DOI | MR | Zbl

[10] Wu Z. Y., Zhang D. H., Zheng Q. R., “Quantum deformation of KdV hierarchies and their exact solutions: $q$-deformed solitons”, J. Phys. A: Math. Gen., 27 (1994), 5307–5312 | DOI | MR | Zbl

[11] Frenkel E., Reshetikhin N., “Quantum affine algebras and deformations of the Virasoro and $W$-algebras”, Comm. Math. Phys., 178 (1996), 237–264 ; arXiv:q-alg/9505025 | DOI | MR | Zbl

[12] Frenkel E., “Deformations of the KdV hierarchy and related soliton equations”, Int. Math. Res. Not., 2 (1996), 55–76 ; arXiv:q-alg/9511003 | DOI | MR | Zbl

[13] Haine L., Iliev P., “The bispectral property of a $q$-deformation of the Schur polynomials and the $q$-KdV hierarchy”, J. Phys. A: Math. Gen., 30 (1997), 7217–7227 | DOI | MR | Zbl

[14] Adler M., Horozov E., van Moerbeke P., “The solution to the $q$-KdV equation”, Phys. Lett. A, 242 (1998), 139–151 ; arXiv:solv-int/9712015 | DOI | MR | Zbl

[15] Tu M. H., Shaw J. C., Lee C. R., “On Darboux–Bäcklund transformations for the $q$-deformed Korteweg–de Vries hierarchy”, Lett. Math. Phys., 49 (1999), 33–45 ; arXiv:solv-int/9811004 | DOI | MR | Zbl

[16] Tu M. H., Shaw J. C., Lee C. R., “On the $q$-deformed modified Korteweg–de Vries hierarchy”, Phys. Lett. A, 266 (2000), 155–159 | DOI | MR

[17] Khesin B., Lyubashenko V., Roger C., “Extensions and contractions of the Lie algebra of $q$-pseudodifferential symbols on the circle”, J. Funct. Anal., 143 (1997), 55–97 ; arXiv:hep-th/9403189 | DOI | MR | Zbl

[18] Mas J., Seco M., “The algebra of $q$-pseudodifferential symbols and the $q$-$W_{\rm KP}^{(n)}$ algebra”, J. Math. Phys., 37 (1996), 6510–6529 ; arXiv:q-alg/9512025 | DOI | MR | Zbl

[19] Iliev P., “Solutions to Frenkel's deformation of the KP hierarchy”, J. Phys. A: Math. Gen., 31 (1998), L241–L244 | DOI | MR | Zbl

[20] Iliev P., “Tau function solutions to a $q$-deformation of the KP hierarchy”, Lett. Math. Phys., 44 (1998), 187–200 | DOI | MR | Zbl

[21] Iliev P., “$q$-KP hierarchy, bispectrality and Calogero–Moser systems”, J. Geom. Phys., 35 (2000), 157–182 | DOI | MR | Zbl

[22] Tu M. H., “$q$-deformed KP hierarchy: its additional symmetries and infinitesimal Bäcklund transformations”, Lett. Math. Phys., 49 (1999), 95–103 ; arXiv:solv-int/9811010 | DOI | MR

[23] Wang S. K., Wu K., Wu X. N., Wu D. L., “The $q$-deformation of AKNS-D hierarchy”, J. Phys. A: Math. Gen., 34 (2001), 9641–9651 | DOI | MR | Zbl

[24] He J. S., Li Y. H., Cheng Y., “$q$-deformed Gelfand–Dickey hierarchy and the determinant representation of its gauge transformation”, Chinese Ann. Math. Ser. A, 25 (2004), 373–382, in Chinese | MR | Zbl

[25] Konopelchenko B. G., Sidorenko J., Strampp W., “$(1+1)$-dimensional integrable systems as symmetry constraints of $(2+1)$-dimensional systems”, Phys. Lett. A, 157 (1991), 17–21 | DOI | MR

[26] Cheng Y., Li Y. S., “The constraint of the Kadomtsev–Petviashvili equation and its special solutions”, Phys. Lett. A, 157 (1991), 22–26 | DOI | MR

[27] Oevel W., Strampp W., “Constrained KP hierarchy and bi-Hamiltonian structures”, Comm. Math. Phys., 157 (1993), 51–81 | DOI | MR | Zbl

[28] Cheng Y., “Constraints of the Kadomtsev–Petviashvili hierarchy”, J. Math. Phys., 33 (1992), 3774–3782 | DOI | MR | Zbl

[29] Cheng Y., “Modifying the KP, the $n$th constrained KP hierarchies and their Hamiltonian structures”, Comm. Math. Phys., 171 (1995), 661–682 | DOI | MR | Zbl

[30] Aratyn H., Ferreira L. A., Gomes J. F., Zimerman A. H., “Constrained KP models as integrable matrix hierarchies”, J. Math. Phys., 38 (1997), 1559–1576 ; arXiv:hep-th/9509096 | DOI | MR | Zbl

[31] Aratyn H., “On Grassmannian description of the constrained KP hierarchy”, J. Geom. Phys., 30 (1999), 295–312 ; arXiv:solv-int/9805006 | DOI | MR | Zbl

[32] Chau L. L., Shaw J. C., Yen H. C., “Solving the KP hierarchy by gauge transformations”, Comm. Math. Phys., 149 (1992), 263–278 | DOI | MR | Zbl

[33] Oevel W., Rogers C., “Gauge transformations and reciprocal links in $2+1$ dimensions”, Rev. Math. Phys., 5 (1993), 299–330 | DOI | MR | Zbl

[34] He J. S., Li Y. S., Cheng Y., “The determinant representation of the gauge transformation operators”, Chinese Ann. Math. Ser. B, 23 (2002), 475–486 | DOI | MR | Zbl

[35] He J. S., Li Y. S., Cheng Y., “Two choices of the gauge transformation for the AKNS hierarchy through the constrained KP hierarchy”, J. Math. Phys., 44 (2003), 3928–3960 | DOI | MR | Zbl

[36] Date E., Kashiwara M., Jimbo M., Miwa T., “Transformation group for soliton equations”, Bosonization, eds. M. Stone, World Scientific, Singapore, 1994, 427–507

[37] Dickey L. A., Soliton equations and Hamiltonian systems, World Scientific, Singapore, 1991 | MR | Zbl

[38] Oevel W., Strampp W., “Wronskian solutions of the constrained Kadomtsev–Petviashvili hierarchy”, J. Math. Phys., 37 (1996), 6213–6219 | DOI | MR | Zbl

[39] Ohta Y., Satsuma J., Takahashi D., Tokihiro T., “An elementary introduction to Sato theory”, Progr. Theoret. Phys. Suppl., 94 (1988), 210–241 | DOI | MR

[40] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, Cambridge, 1991 | MR | Zbl