@article{SIGMA_2006_2_a58,
author = {Yuri N. Kosovtsov},
title = {Finding {Liouvillian} {First} {Integrals} of {Rational} {ODEs} of {Any} {Order} in {Finite} {Terms}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a58/}
}
Yuri N. Kosovtsov. Finding Liouvillian First Integrals of Rational ODEs of Any Order in Finite Terms. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a58/
[1] Olver P. J., Applications of Lie groups to differential equations, Springer-Verlag, New York, 1993 | MR
[2] Darboux G., “Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges)”, Bull. Sci. Math., 2 (1878), 60–96 ; 12–144; 151–200 | Zbl
[3] Prelle M., Singer M., “Elementary first integral of differential equations”, Trans. Amer. Math. Soc., 279 (1983), 215–229 | DOI | MR | Zbl
[4] B. Korenblum and M. J. Prelle, SIGSAM Bulletin, 15:2 (1981), 20–32 | DOI
[5] Ritt R. H., Integration in finite terms. Liouville's theory of elementary functions, Columbia Univ. Press, New York, 1948 | Zbl
[6] Singer M., “Liouvillian first integrals of differential equations”, Trans. Amer. Math. Soc., 333 (1992), 673–688 | DOI | MR | Zbl
[7] Christopher C., “Liouvillian first integrals of second order polynomial differential equations”, Electron. J. Differential Equations, 1999, Paper No 49, 7 pp., ages | MR
[8] Man Y. K., MacCallum M. A. H., “A rational approach to the Prelle–Singer algorithm”, J. Symbolic Comput., 24 (1997), 31–43 | DOI | MR | Zbl
[9] Man Y. K., “First integrals of autonomous systems of differential equations and Prelle–Singer procedure”, J. Phys. A: Math. Gen., 27 (1994), L329–L332 | DOI | MR | Zbl
[10] Duarte L. G. S., Duarte S. E. S., da Mota L. A. C. P., “Analyzing the structure of the integrating factor for first order differential equations with Liouvillian functions in the solutions”, J. Phys. A: Math. Gen., 35 (2002), 1001–1006 | DOI | MR | Zbl
[11] Duarte L. G. S., Duarte S. E. S., da Mota L. A. C. P., “A method to tackle first-order ordinary differential equations with Liouvillian functions in the solution”, J. Phys. A: Math. Gen., 35 (2002), 3899–3910 ; arXiv:math-ph/0107007 | DOI | MR | Zbl
[12] Shtokhamer R., Glinos N., Caviness B. F., “Computing elementary first integrals of differential equations”, Proccedings of the Conference on Computers and Mathematics, V. 1 (July 30–August 1, Stanford, California), 1986, 1–9
[13] Man Y. K., “Computing closed form solutions of first order ODEs using the Prelle–Singer procedure”, J. Symbolic Comput., 16 (1993), 423–443 | DOI | MR | Zbl
[14] Duarte L. G. S., Duarte S. E. S., da Mota L. A. C. P., Skea J. E., “An extension of the Prelle–Singer method and a MAPLE implementation”, Comput. Phys. Comm., 144 (2002), 46–62 | DOI | MR | Zbl
[15] Duarte L. G. S., da Mota L. A., Skea J. E. F., Solving second order equations by extending the PS method, arXiv:math-ph/0001004
[16] Kosovtsov Yu. N., The structure of general solutions and integrability conditions for rational first-order ODE's, arXiv:math-ph/0207032 | Zbl
[17] Kosovtsov Yu. N., The rational generalized integrating factors for first-order ODEs, arXiv:math-ph/0211069 | Zbl
[18] Garcia I. A., Gine J., “Generalized cofactors and nonlinear superposition principles”, Appl. Math. Lett., 16 (2003), 1137–1141 | DOI | MR | Zbl
[19] Garcia I. A., Giacomini H., Gine J., “Generalized nonlinear superposition principles for polynomial planar vector fields”, J. Lie Theory, 15 (2005), 89–104 | MR | Zbl
[20] Giacomini H., Gine J., “An algorithmic method to determine integrability for polynomial planar vector fields”, European J. Appl. Math., 17:2 (2006), 161–170 | DOI | MR | Zbl
[21] Kosovtsov Yu. N., 2 Procedures for finding integrating factors of some ODEs of any order, Maple Application Center, see , 2004 here
[22] Kosovtsov Yu. N., Particular solutions and integrating factors of some ODEs of any order, Maple Application Center, see , 2005 here