A Dual Mesh Method for a Non-Local Thermistor Problem
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a dual mesh numerical method to study a non-local parabolic problem arising from the well-known thermistor problem.
Keywords: non-local thermistor problem; joule heating; box scheme method.
@article{SIGMA_2006_2_a57,
     author = {Abderrahmane El Hachimi and Moulay Rchid Sidi Ammi and Delfim F. M. Torres},
     title = {A~Dual {Mesh} {Method} for {a~Non-Local} {Thermistor} {Problem}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a57/}
}
TY  - JOUR
AU  - Abderrahmane El Hachimi
AU  - Moulay Rchid Sidi Ammi
AU  - Delfim F. M. Torres
TI  - A Dual Mesh Method for a Non-Local Thermistor Problem
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a57/
LA  - en
ID  - SIGMA_2006_2_a57
ER  - 
%0 Journal Article
%A Abderrahmane El Hachimi
%A Moulay Rchid Sidi Ammi
%A Delfim F. M. Torres
%T A Dual Mesh Method for a Non-Local Thermistor Problem
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a57/
%G en
%F SIGMA_2006_2_a57
Abderrahmane El Hachimi; Moulay Rchid Sidi Ammi; Delfim F. M. Torres. A Dual Mesh Method for a Non-Local Thermistor Problem. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a57/

[1] Allegretto W., Lin Y., Zhou A., “A box scheme for coupled systems resulting from microsensor thermistor problems”, Dynam. Contin. Discrete Impuls. Systems, 5:1–4 (1999), 209–223 | MR | Zbl

[2] Antontsev S. N., Chipot M., “The thermistor problem: existence, smoothness uniqueness, blowup”, SIAM J. Math. Anal., 25:4 (1994), 1128–1156 | DOI | MR | Zbl

[3] Cai Z. Q., “On the finite volume element method”, Numer. Math., 58:7 (1991), 713–735 | MR | Zbl

[4] Ciarlet P. G., The finite element method for elliptic problems, North-Holland, Amsterdam, 1978 | MR | Zbl

[5] Chatzipantelidis P., Lazarov R. D., Thomée V., “Error estimates for a finite volume element method for parabolic equations in convex polygonal domains”, Numer. Methods Partial Differential Equations, 20:5 (2004), 650–674 | DOI | MR | Zbl

[6] Cimatti G., “On the stability of the solution of the thermistor problem”, Appl. Anal., 73:3–4 (1999), 407–423 | DOI | MR | Zbl

[7] Cimatti G., “Stability and multiplicity of solutions for the thermistor problem”, Ann. Mat. Pura Appl. (4), 181:2 (2002), 181–212 | DOI | MR | Zbl

[8] El Hachimi A., Sidi Ammi M. R., “Existence of weak solutions for the thermistor problem with degeneracy”, Proceedings of the 2002 Fez Conference on Partial Differential Equations, Electron. J. Differ. Equ. Conf., 9, 2002, 127–137 | MR

[9] El Hachimi A., Sidi Ammi M. R., “Thermistor problem: a nonlocal parabolic problem”, Proceedings of the 2004-Fez Conference on Differential Equations and Mechanics, Electron. J. Differ. Equ. Conf., 11, 2004, 117–128 | MR | Zbl

[10] El Hachimi A., Sidi Ammi M. R., “Existence of global solution for a nonlocal parabolic problem”, Electron. J. Qual. Theory Differ. Equ., 2005 (2005), Paper no 1, 9 pp., ages | MR | Zbl

[11] El Hachimi A., Sidi Ammi M. R., “Semi-discretization for a non local parabolic problem”, Int. J. Math. Math. Sci., 10 (2005), 1655–1664 | DOI | Zbl

[12] Elliott C. M., Larsson S., “A finite element model for the time-dependent Joule heating problem”, Math. Comp., 64:212 (1995), 1433–1453 | DOI | MR | Zbl

[13] Lacey A. A., “Thermal runaway in a non-local problem modelling Ohmic heating. I. Model derivation and some special cases”, European J. Appl. Math., 6:2 (1995), 127–144 | DOI | MR | Zbl

[14] Lacey A. A., “Thermal runaway in a non-local problem modelling Ohmic heating. II. General proof of blow-up and asymptotics of runaway”, European J. Appl. Math., 6:3 (1995), 201–224 | DOI | MR | Zbl

[15] Tzanetis D. E., “Blow-up of radially symmetric solutions of a non-local problem modelling Ohmic heating”, Electron. J. Differential Equations, 2002 (2002), Paper no 11, 26 pp., ages | MR | Zbl

[16] Xu X., “Local and global existence of continuous temperature in the electrical heating of conductors”, Houston J. Math., 22:2 (1996), 435–455 | MR | Zbl

[17] Xu X., “Existence and uniqueness for the nonstationary problem of the electrical heating of a conductor due to the Joule–Thomson effect”, Int. J. Math. Math. Sci., 16:1 (1993), 125–138 | DOI | MR | Zbl

[18] Yue X. Y., “Numerical analysis of nonstationary thermistor problem”, J. Comput. Math., 12:3 (2004), 213–223 | MR