@article{SIGMA_2006_2_a56,
author = {Kanehisa Takasaki},
title = {Dispersionless {Hirota} {Equations} of {Two-Component} {BKP} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a56/}
}
Kanehisa Takasaki. Dispersionless Hirota Equations of Two-Component BKP Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a56/
[1] Sato M., “Soliton equations as dynamical systems on an infinite dimensional Grassmannian manifold”, Surikaiseki Kenkyusho Kokyuroku (RIMS, Kyoto University), 439 (1981), 30–46 | Zbl
[2] Sato M., Sato Y., “Soliton equations as dynamical systems on an infinite dimensional Grassmannian manifold”, Nonlinear Partial Differential Equations in Applied Science (1982, Tokyo), North-Holland Math. Stud., 81, eds. H. Fujita, P. D. Lax and G. Strang, North-Holland, Amsterdam, 1983, 259–271 | MR | Zbl
[3] Date E., Kashiwara M., Miwa T., “Transformation groups for soliton equations. II. Vertex operators and $\tau$ functions”, Proc. Japan Acad. Ser. A Math. Sci., 57 (1981), 387–392 | DOI | MR | Zbl
[4] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type”, Phys. D, 4 (1981/82), 343–365 | DOI | MR
[5] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. V. Quasiperiodic solutions of the orthogonal KP equation”, Publ. Res. Inst. Math. Sci., 18 (1982), 1111–1119 | DOI | MR | Zbl
[6] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. VI. KP hierarchies of orthogonal and symplectic type”, J. Phys. Soc. Japan, 50 (1981), 3813–3818 | DOI | MR | Zbl
[7] Shiota T., “Prym varieties and soliton equations”, Infinite Dimensional Lie Algebras and Groups, Advanced Series in Math. Phys., 7, ed. V. G. Kac, World Scientific, Singapore, 1989, 407–448 | MR
[8] Krichever I., A characterization of Prym varieties, arXiv:math.AG/0506238 | MR
[9] Takasaki K., “Quasi-classical limit of BKP hierarchy and $W$-infinity symmetries”, Lett. Math. Phys., 28 (1993), 177–185 ; arXiv:hep-th/9301090 | DOI | MR | Zbl
[10] Takasaki K., Takebe T.,, “Integrable hierarchies and dispersionless limit”, Rev. Math. Phys., 7 (1995), 743–808 ; arXiv:hep-th/9405096 | DOI | MR | Zbl
[11] Bogdanov L. V., Konopelchenko B. G., “On dispersionless BKP hierarchy and its reductions”, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 64–75 ; arXiv:nlin.SI/0411046 | DOI | MR
[12] Konopelchenko B. G., Martinez Alonso L., Ragnisco O., “$\bar\partial$-approach to the dispersionless KP hierarchy”, J. Phys. A: Math. Gen., 34 (2001), 10209–10217 ; arXiv:nlin.SI/0103023 | DOI | MR | Zbl
[13] Konopelchenko B., Martinez Alonso L., “$\bar\partial$-equations, integrable deformations of quasi-conformal mappings and Whitham hierarchy”, Phys. Lett. A, 286 (2001), 161–166 ; arXiv:nlin.SI/0103015 | DOI | MR | Zbl
[14] Konopelchenko B., Martinez Alonso L., “Dispersionless scalar integrable hierarchies, Whitham hierarchy and the quasi-classical $\bar\partial$-dressing method”, J. Math. Phys., 43 (2001), 3807–3823 | DOI | MR
[15] Theoret. and Math. Phys., 134:1 (2003), 39–46 | DOI | MR | Zbl
[16] Krichever I. M., “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Comm. Pure. Appl. Math., 47 (1994), 437–475 ; arXiv:hep-th/9205110 | DOI | MR | Zbl
[17] Carroll R., Kodama Y., “Solutions of the dispersionless Hirota equations”, J. Phys. A: Math. Gen., 28 (1995), 6373–6378 ; arXiv:hep-th/9506007 | DOI | MR
[18] Kostov I. K., Krichever I., Mineev-Weinstein M., Wiegmann P. B., Zabrodin A., “$\tau$-function for analytic curve”, Random Matrices and Their Applications, Math. Sci. Res. Inst. Publ., 40, eds. P. Bleher and A. Its, Cambridge University Press, Cambridge, 2001, 285–299 ; arXiv:hep-th/0005259 | MR | Zbl
[19] Theoret. and Math. Phys., 129:2 (2001), 1511–1525 ; arXiv:math.CV/0104169 | DOI | MR | Zbl
[20] Boyarsky A., Marshakov A., Ruchayskiy O., Wiegmann P., Zabrodin A., “Associativity equations in dispersionless integrable hierarchies”, Phys. Lett. B, 515 (2001), 483–492 ; arXiv:hep-th/0105260 | DOI | MR | Zbl
[21] Teo L.-P.,, “Analytic functions and integrable hierarchies – characterization of tau functions”, Lett. Math. Phys., 64 (2003), 75–92 ; arXiv:hep-th/0305005 | DOI | MR | Zbl
[22] Kac V., van de Leur J., “The geometry of spinors and the multicomponent BKP and DKP hierarchies”, CRM Proc. Lect. Notes, 14, American Mathematical Society, Providence, 1998, 159–202 | MR | Zbl
[23] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy”, Publ. Res. Inst. Math. Sci., 18 (1982), 1077–1110 | DOI | MR | Zbl
[24] Novikov S., Veselov A., “Finite-gap two-dimensional potential Schrödinger operators Explicit formulas and evolution equations”, Soviet Math. Dokl., 30 (1984), 588–591 | MR | Zbl
[25] Ueno K., Takasaki K., “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (1982, Tokyo), Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 1–94 | MR
[26] Konopelchenko B., Moro A., “Integrable equations in nonlinear geometrical optics”, Stud. Appl. Math., 113 (2004), 325–352 ; arXiv:nlin.SI/0403051 | DOI | MR | Zbl
[27] Jimbo M., Miwa T., “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI | MR | Zbl
[28] Takebe T., “Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy. I”, Lett. Math. Phys., 21 (1991), 77–84 | DOI | MR | Zbl
[29] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory, eds. M. Jimbo and T. Miwa, World Scientific, Singapore, 1983, 39–119 | MR
[30] Dickey L., Soliton equations and Hamiltonian systems, World Scientific, Singapore, 1991 | MR | Zbl