On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a class of $*$-algebras, where $*$-algebra $A_{\Gamma,\tau}$ is generated by projections associated with vertices of graph $\Gamma$ and depends on a parameter $\tau$ ($0\tau\leq 1$), we study the sets $\Sigma_\Gamma$ of values of $\tau$ such that the algebras $A_{\Gamma,\tau}$ have nontrivial $*$-representations, by using the theory of spectra of graphs. In other words, we study such values of $\tau$ that the corresponding configurations of subspaces in a Hilbert space exist.
Keywords: representations of $*$-algebras; Temperley–Lieb algebras.
@article{SIGMA_2006_2_a54,
     author = {Natasha D. Popova and Yurii S. Samoilenko},
     title = {On the {Existence} of {Configurations} of {Subspaces} in {a~Hilbert} {Space} with {Fixed} {Angles}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a54/}
}
TY  - JOUR
AU  - Natasha D. Popova
AU  - Yurii S. Samoilenko
TI  - On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a54/
LA  - en
ID  - SIGMA_2006_2_a54
ER  - 
%0 Journal Article
%A Natasha D. Popova
%A Yurii S. Samoilenko
%T On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a54/
%G en
%F SIGMA_2006_2_a54
Natasha D. Popova; Yurii S. Samoilenko. On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a54/

[1] Cvetković D. M., Doob M., Sachs H., Spectra of graphs. Theory and applications, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980 | Zbl

[2] Evans D. E., Kawahigashi Y., Quantum symmetries on operator algebras, Oxford University Press, 1998 | MR

[3] Fan C. K., Green R. M., “On the affine Temperley–Lieb algebras”, J. London Math. Soc. (2), 60:2 (1999), 366–380 | DOI | MR | Zbl

[4] Ostrovskyi V. L., Samoǐlenko Yu. S., Introduction to the theory of representations of finitely presented $*$-algebras. I. Representations by bounded operators, Harwood Acad. Publ., 1999 | MR

[5] Popova N., “On the algebra of Temperley–Lieb type”, Proceedings of Fourth International Conference “Symmetry in Nonlinear Mathematical Physics”, Part 2 (July 9–15, 2001, Kyiv), Proceedings of Institute of Mathematics, 43, eds. A. G. Nikitin, V. M. Boyko and R. O. Popovych, Kyiv, 2002, 486–489 | MR | Zbl

[6] Temperley H. N. V., Lieb E. H., “Relations between “percolations” and “colouring” problems and other graph theoretical problems associated with regular planar lattices: some exact results for the percolation problem”, Proc. Roy. Soc. London Ser. A, 322:1549 (1971), 251–280 | DOI | MR | Zbl

[7] Vlasenko M., “On the growth of an algebra generated by a system of projections with fixed angles”, Methods Funct. Anal. Topology, 10:1 (2004), 98–104 | MR | Zbl

[8] Ukrainian Math. J., 56:5 (2004), 730–740 | DOI | MR | Zbl

[9] Wenzl H., “On sequences of projections”, C. R. Math. Rep. Acad. Sci. Canada, 9:1 (1987), 5–9 | MR | Zbl