@article{SIGMA_2006_2_a54,
author = {Natasha D. Popova and Yurii S. Samoilenko},
title = {On the {Existence} of {Configurations} of {Subspaces} in {a~Hilbert} {Space} with {Fixed} {Angles}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a54/}
}
TY - JOUR AU - Natasha D. Popova AU - Yurii S. Samoilenko TI - On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles JO - Symmetry, integrability and geometry: methods and applications PY - 2006 VL - 2 UR - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a54/ LA - en ID - SIGMA_2006_2_a54 ER -
%0 Journal Article %A Natasha D. Popova %A Yurii S. Samoilenko %T On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles %J Symmetry, integrability and geometry: methods and applications %D 2006 %V 2 %U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a54/ %G en %F SIGMA_2006_2_a54
Natasha D. Popova; Yurii S. Samoilenko. On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a54/
[1] Cvetković D. M., Doob M., Sachs H., Spectra of graphs. Theory and applications, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980 | Zbl
[2] Evans D. E., Kawahigashi Y., Quantum symmetries on operator algebras, Oxford University Press, 1998 | MR
[3] Fan C. K., Green R. M., “On the affine Temperley–Lieb algebras”, J. London Math. Soc. (2), 60:2 (1999), 366–380 | DOI | MR | Zbl
[4] Ostrovskyi V. L., Samoǐlenko Yu. S., Introduction to the theory of representations of finitely presented $*$-algebras. I. Representations by bounded operators, Harwood Acad. Publ., 1999 | MR
[5] Popova N., “On the algebra of Temperley–Lieb type”, Proceedings of Fourth International Conference “Symmetry in Nonlinear Mathematical Physics”, Part 2 (July 9–15, 2001, Kyiv), Proceedings of Institute of Mathematics, 43, eds. A. G. Nikitin, V. M. Boyko and R. O. Popovych, Kyiv, 2002, 486–489 | MR | Zbl
[6] Temperley H. N. V., Lieb E. H., “Relations between “percolations” and “colouring” problems and other graph theoretical problems associated with regular planar lattices: some exact results for the percolation problem”, Proc. Roy. Soc. London Ser. A, 322:1549 (1971), 251–280 | DOI | MR | Zbl
[7] Vlasenko M., “On the growth of an algebra generated by a system of projections with fixed angles”, Methods Funct. Anal. Topology, 10:1 (2004), 98–104 | MR | Zbl
[8] Ukrainian Math. J., 56:5 (2004), 730–740 | DOI | MR | Zbl
[9] Wenzl H., “On sequences of projections”, C. R. Math. Rep. Acad. Sci. Canada, 9:1 (1987), 5–9 | MR | Zbl