@article{SIGMA_2006_2_a53,
author = {Partha Guha and Peter J. Olver},
title = {Geodesic {Flow} and {Two} {(Super)} {Component} {Analog} of the {Camassa{\textendash}Holm} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a53/}
}
TY - JOUR AU - Partha Guha AU - Peter J. Olver TI - Geodesic Flow and Two (Super) Component Analog of the Camassa–Holm Equation JO - Symmetry, integrability and geometry: methods and applications PY - 2006 VL - 2 UR - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a53/ LA - en ID - SIGMA_2006_2_a53 ER -
Partha Guha; Peter J. Olver. Geodesic Flow and Two (Super) Component Analog of the Camassa–Holm Equation. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a53/
[1] Arbarello E., De Concini C., Kac V. G., Procesi C., “Moduli space of curves and representation theory”, Comm. Math. Phys., 117 (1988), 1–36 | DOI | MR | Zbl
[2] Camassa R., Holm D. D., “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71 (1993), 1661–1664 ; arXiv:patt-sol/9305002 | DOI | MR | Zbl
[3] Camassa R., Holm D. D., Hyman J. M., “A new integrable shallow water equation”, Adv. in Appl. Mech., 31 (1994), 1–33 | DOI | Zbl
[4] Chen M., Liu S.-Q., Zhang Y., A 2-component generalization of the Camassa–Holm equation and its solutions, arXiv:nlin.SI/0501028
[5] Devchand C., Schiff J., “The supersymmetric Camassa–Holm equation and geodesic flow on the superconformal group”, J. Math. Phys., 42 (2001), 260–273 ; arXiv:solv-int/9811016 | DOI | MR | Zbl
[6] Ebin D., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. Math., 92 (1970), 102–163 | DOI | MR | Zbl
[7] Falqui G., On a Camassa–Holm type equation with two dependent variables, arXiv:nlin.SI/0505059 | MR
[8] Fuchssteiner B., “Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation”, Phys. D, 95 (1996), 229–243 | DOI | MR | Zbl
[9] Gelfand I. M., Graev I. M., Vershik A. M., “Models of representations of current groups”, Representations of Lie Groups and Lie Algebras, Akad. Kiad, Budapest, 1985, 121–179 | MR
[10] Guha P., “Integrable geodesic flows on the (super)extension of the Bott–Virasoro group”, Lett. Math. Phys., 52 (2000), 311–328 | DOI | MR | Zbl
[11] Guha P., “Geodesic flows, bi-Hamiltonian structure and coupled KdV type systems”, J. Math. Anal. Appl., 310 (2005), 45–56 | DOI | MR | Zbl
[12] Guha P., “Euler–Poincaré formalism of coupled KdV type systems and diffeomorphism group on $S^1$”, J. Appl. Anal., 11 (2005), 261–282 | MR | Zbl
[13] Holm D. D., Marsden J. E., Ratiu T. S., “The Euler–Poincaré equations and semidirect products with applications to continuum theories”, Adv. Math., 137 (1998), 1–81 ; arXiv:chao-dyn/9801015 | DOI | MR | Zbl
[14] Ito M., “Symmetries and conservation laws of a coupled nonlinear wave equation”, Phys. Lett. A, 91 (1982), 335–338 | DOI | MR
[15] Li Y. A., Olver P. J., Rosenau P., “Non-analytic solutions of nonlinear wave models”, Nonlinear Theory of Generalized Functions, Research Notes in Mathematics, 401, eds. M. Grosser, G. Hörmann, M. Kunzinger and M. Oberguggenberger, Chapman and Hall/CRC, New York, 1999, 129–145 | MR | Zbl
[16] Liu S.-Q., Zhang Y., “Deformations of semisimple bi-Hamiltonian structures of hydrodynamic type”, J. Geom. Phys., 54 (2005), 427–453 ; arXiv:math.DG/0405146 | DOI | MR | Zbl
[17] Manin Yu. I., Radul A. O., “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Comm. Math. Phys., 98 (1985), 65–77 | DOI | MR | Zbl
[18] Marcel P., Ovsienko V., Roger C., “Extension of the Virasoro and Neveu–Schwartz algebras and generalized Sturm–Liouville operators”, Lett. Math. Phys., 40 (1997), 31–39 ; arXiv:hep-th/9602170 | DOI | MR | Zbl
[19] Mathieu P., “Supersymmetric extension of the Korteweg–de Vries equation”, J. Math. Phys., 29 (1988), 2499–2506 | DOI | MR | Zbl
[20] Misiolek G., “A shallow water equation as a geodesic flow on the Bott–Virasoro group”, J. Geom. Phys., 24 (1998), 203–208 | DOI | MR | Zbl
[21] Olver P. J., Applications of Lie groups to differential equations, 2nd ed., Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1993 | MR | Zbl
[22] Olver P. J., Rosenau P., “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support”, Phys. Rev. E, 53 (1996), 1900–1906 | DOI | MR
[23] Ovsienko V. Yu., Khesin B. A., “KdV super equation as an Euler equation”, Funct. Anal. Appl., 21:4 (1987), 327–329 | MR
[24] Ovsienko V. Yu., “Coadjoint representation of Virasoro-type Lie algebras and differential operators on tensor-densities”, Infinite Dimensional Kähler Manifolds (1995, Oberwolfach), DMV Sem., 31, Birkhäuser, Basel, 2001, 231–255 | MR | Zbl
[25] Popowicz Z., A 2-component or $N=2$ supersymmetric Camassa–Holm equation, arXiv:nlin.SI/0509050 | MR
[26] Rosenau P., “Nonlinear dispersion and compact structures”, Phys. Rev. Lett., 73 (1994), 1737–1741 | DOI | MR | Zbl