@article{SIGMA_2006_2_a52,
author = {Tatiana V. Ryabukha},
title = {On {Regularized} {Solution} for {BBGKY} {Hierarchy} of {One-Dimensional} {Infinite} {System}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a52/}
}
Tatiana V. Ryabukha. On Regularized Solution for BBGKY Hierarchy of One-Dimensional Infinite System. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a52/
[1] Petrina D. Ya., Gerasimenko V. I., Malyshev P. V., Mathematical foundations of classical statistical mechanics. Continuous systems, 2nd ed., Taylor Francis Inc., London–New York, 2002 | MR | Zbl
[2] Cercignani C., Gerasimenko V. I., Petrina D. Ya., Many-particle dynamics and kinetic equations, Kluwer Acad. Publ., 1997 | MR | Zbl
[3] Cercignani C., Illner R., Pulvirenti M., The mathematical theory of dilute gases, Applied Mathematical Sciences, 106, Springer, New York, 1994 | MR | Zbl
[4] Spohn H., Large scale dynamics of interacting particles, Springer, 1991
[5] Petrina D. Ya., “Mathematical description of the evolution of infinite systems of classical statistical physics. I. Locally perturbed one-dimensional systems”, Teoret. Mat. Fiz., 38:2 (1979), 230–250 (in Russian) | MR
[6] Petrina D. Ya., Gerasimenko V. I., “Mathematical description of the evolution of the state of infinite systems of classical statistical mechanics”, Uspekhi Mat. Nauk, 38:5 (1983), 3–58 (in Russian) | MR | Zbl
[7] Gerasimenko V. I., Ryabukha T. V., “Dual nonequilibrium cluster expansions”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 3 (2003), 16–22 (in Ukrainian) | MR | Zbl
[8] Gerasimenko V. I., Ryabukha T. V., Stashenko M. O., “On the BBGKY hierarchy solutions for many-particle systems with different symmetry properties”, Proceedings of Fifth International Conference “Symmetry in Nonlinear Mathematical Physics”, Part 3 (June 23–29, 2003, Kyiv), Proceedings of Institute of Mathematics, 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych and I. A. Yehorchenko, Kyiv, 2004, 1308–1313 | MR | Zbl
[9] Ukrainian Math. J., 54 (2002), 1583–1601 | DOI | MR | Zbl
[10] Ruelle D., Statistical mechanics. Rigorous results, W. A. Benjiamin Inc., New York–Amsterdam, 1969 | MR | Zbl
[11] Cohen E. G. D., “Cluster expansions and the hierarchy. I. Non-equilibrium distribution functions”, Physica, 28 (1962), 1045–1059 | DOI | MR | Zbl
[12] Green H. S., Piccirelli R. A., “Basis of the functional assumption in the theory of the Boltzmann equation”, Phys. Rev. (2), 132 (1963), 1388–1410 | DOI | MR | Zbl
[13] Reed M., Simon B., Methods of modern mathematical physics. Vol. 1. Functional analysis, Academic Press, New York–London, 1972
[14] Kaniadakis G., “BBGKY hierarchy underlying many-particle quantum mechanics”, Phys. Lett. A, 310 (2003), 377–382 ; arXiv:quant-ph/0303159 | DOI | MR | Zbl
[15] Tarasov V. E., “Fractional systems and fractional Bogoliubov hierarchy equations”, Phys. Rev. E, 71 (2005), 011102, 12 pp., ages ; arXiv:cond-mat/0505720 | DOI | MR
[16] Illner R., Pulvirenti M., “Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum”, Comm. Math. Phys., 105 (1986), 189–203 | DOI | MR | Zbl
[17] Illner R., Pulvirenti M., “A derivation of the BBGKY-hierarchy for hard sphere particle systems”, Transport Theory Statist. Phys., 16 (1987), 997–1012 | DOI | MR | Zbl