Orbit Functions
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space $E_n$ are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter–Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group $G$ of rank $n$ from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group) in the entire Euclidean space $E_n$. Orbit functions are solutions of the corresponding Laplace equation in $E_n$, satisfying the Neumann condition on the boundary of $F$. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.
Keywords: orbit functions; Coxeter–Dynkin diagram; Weyl group; orbits; products of orbits; orbit function transform; finite orbit function transform; Neumann boundary problem; symmetric polynomials.
@article{SIGMA_2006_2_a5,
     author = {Anatoliy Klimyk and Jiri Patera},
     title = {Orbit {Functions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a5/}
}
TY  - JOUR
AU  - Anatoliy Klimyk
AU  - Jiri Patera
TI  - Orbit Functions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a5/
LA  - en
ID  - SIGMA_2006_2_a5
ER  - 
%0 Journal Article
%A Anatoliy Klimyk
%A Jiri Patera
%T Orbit Functions
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a5/
%G en
%F SIGMA_2006_2_a5
Anatoliy Klimyk; Jiri Patera. Orbit Functions. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a5/

[1] Patera J., “Orbit functions of compact semisimple Lie groups as special functions”, Proceedinds of Fifth International Conference “Symmetry in Nonlinear Mathematical Physics”, Part 3 (June 23–29, 2003, Kyiv), Proceedings of Institute of Mathematics, 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych and I. A. Yehorchenko, Kyiv, 2004, 1152–1160 | MR | Zbl

[2] Vilenkin N. Ja., Klimyk A. U., Representations of Lie groups and special functions, Vols. 1–3, Kluwer, Dordrecht, 1991–1993 | MR | Zbl

[3] Miller W., Lie theory and special functions, Academic Press, New York, 1968 | MR | Zbl

[4] Vilenkin N. Ja., Special functions and the theory of group representations, Amer. Math. Soc., Providence RI, 1968 | MR | Zbl

[5] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Univ. Press, Oxford, 1995 | MR | Zbl

[6] Macdonald I. G., “A new class of symmetric functions”, B20a, Sémin. Lothar. Comb., 20, Publ. I.R.M.A., Strasbourg, 1988, 41 p.

[7] Macdonald I. G., “Orthogonal polynomials associated with root systems”, B45a, Séminaire Lotharingien de Combinatoire, 45, Strasbourg, 2000, 40 p. | MR | Zbl

[8] Vilenkin N. Ja., Klimyk A. U., Representations of Lie groups and special functions: recent advances, Kluwer, Dordrecht, 1995 | MR

[9] Moody R. V., Patera J., “Computation of character decompositions of class functions on compact semisimple Lie groups”, Math. Comp., 48 (1987), 799–827 | DOI | MR | Zbl

[10] Moody R. V., Patera J., “Elements of finite order in Lie groups and their applications”, XIII Int. Colloq. on Group Theoretical Methods in Physics, ed. W. Zachary, World Scientific Publishers, Singapore, 1984, 308–318 | MR

[11] McKay W. G., Moody R. V., Patera J., “Tables of $E_8$ characters and decomposition of plethysms”, Lie Algebras and Related Topics, eds. D. J. Britten, F. W. Lemire and R. V. Moody, Amer. Math. Society, Providence R.I., 1985, 227–264 | MR

[12] McKay W. G., Moody R. V., Patera J., “Decomposition of tensor products of $E_8$ representations”, Algebras Groups Geom., 3 (1986), 286–328 | MR | Zbl

[13] Patera J., Sharp R. T., “Branching rules for representations of simple Lie algebras through Weyl group orbit reduction”, J. Phys. A: Math. Gen., 22 (1989), 2329–2340 | DOI | MR | Zbl

[14] Grimm S., Patera J., “Decomposition of tensor products of the fundamental representations of $E_8$”, CRM Proc. Lecture Notes, 11 (1997), 329–355 | MR | Zbl

[15] Atoyan A., Patera J., “Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization”, J. Math. Phys., 45 (2004), 2468–2491 ; arXiv:math-ph/0309039 | DOI | MR | Zbl

[16] Rao K. R., Yip P., Discrete cosine transform – algorithms, advantages, applications, Academic Press, New York, 1990 | MR

[17] Kane R., Reflection groups and invariants, Springer, New York, 2002

[18] Humphreys J. E., Reflection groups and Coxeter groups, Cambridge Univ. Press, Cambridge, 1990 | MR

[19] Humphreys J. E., Introduction to Lie Algebras and Representation Theory, Springer, New York, 1972 | MR | Zbl

[20] Pinsky M. A., “The Eigenvalues of an Equilateral Triangle”, SIAM J. Math. Anal., 11 (1980), 819–827 | DOI | MR | Zbl

[21] Patera J., Algebraic solution of the Neumann boundary problems on fundamental regions of a compact semisimple Lie group, Preprint, CRM, Montreal, 2003 | Zbl

[22] Patera J., “Compact simple Lie groups and their $C$-, $S$-, and $E$-transforms”, SIGMA, 1 (2005), paper 025, 6 pp., ages ; arXiv:math-ph/0512029 | MR | Zbl

[23] Bremner M. R., Moody R. V., Patera J., Tables of dominant weight multiplicities for representations of simple Lie algebras, Marcel Dekker, New York, 1985 | MR | Zbl

[24] McKay W. G., Patera J., Rand D. W., Tables of representations of simple Lie algebras, CRM, Montreal, 1990 | MR

[25] Champagne B., Kjiri M., Patera J., Sharp R. T., “Description of reflection generated polytopes using decorated Coxeter diagrams”, Can. J. Phys., 73 (1995), 566–584

[26] Moody R. V., Patera J., “Voronoi and Delaunay cells of root lattices: classification of their faces and facets by Coxeter–Dynkin diagrams”, J. Phys. A: Math. Gen., 25 (1992), 5089–5134 | DOI | MR | Zbl

[27] McKay W. G., Patera J., Sannikoff D., “The computation of branching rules for representations of semisimple Lie algebras”, Computers in Nonassociative Rings and Algebras, eds. R. E. Beck and B. Kolman, Academic Press, New York, 1977, 235–278 | MR

[28] Gingras F., Patera J., Sharp R. T., “Orbit-orbit branching rules between simple low-rank algebras and equal-rank subalgebras”, J. Math. Phys., 33 (1992), 1618–1626 | DOI | MR | Zbl

[29] Patera J., Sharp R. T., “Branching rules for representations of simple Lie algebras through Weyl group orbits reduction”, J. Phys. A: Math. Gen., 22 (1989), 2329–2340 | DOI | MR | Zbl

[30] Patera J., Zaratsyan A., “Discrete and continuous cosine transform generalized to Lie groups $SU(2)\times SU(2)$ and $O(5)$”, J. Math. Phys., 46 (2005), 053514, 25 pp., ages | DOI | MR | Zbl

[31] Patera J., Zaratsyan A., “Discrete and continuous cosine transform generalized to Lie groups $SU(2)$ and $G_2$”, J. Math. Phys., 46 (2005), 113506, 17 pp., ages | DOI | MR | Zbl

[32] Lemire F. W., Patera J., “Congruence number, a generalisation of $SU(3)$ triality”, J. Math. Phys., 21 (1980), 2026–2027 | DOI | MR | Zbl

[33] Zhelobenko D. P., Compact Lie groups and their representations, Nauka, Moscow, 1970 | MR | Zbl

[34] McKay W. G., Patera J., Tables of dimensions, indices and branching rules for representations of simple Lie algebras, Marcel Dekker, New York, 1981 | MR | Zbl

[35] Strang G., “The discrete cosine transform”, SIAM Review, 41 (1999), 135–147 | DOI | MR | Zbl

[36] Kac V., “Automorphisms of finite order of semisimple Lie algebras”, J. Funct. Anal. Appl., 3 (1969), 252–255 | DOI | MR

[37] Moody R. V., Patera J., “Characters of elements of finite order in simple Lie groups”, SIAM J. Algebraic Discrete Methods, 5 (1984), 359–383 | DOI | MR | Zbl

[38] McKay W. G., Moody R. V., Patera J., Pianzola A., “The 785 conjugacy classes of rational elements of finite order in $E_8$”, Contemp. Math., 110 (1990), 79–123 | MR | Zbl

[39] Heckman G. J., Opdam E. M., “Root systems and hypergeometric functions. I”, Compos. Math., 64 (1987), 329–352 | MR | Zbl

[40] Heckman G. J., “Root systems and hypergeometric functions. II”, Compos. Math., 64 (1987), 353–373 | MR | Zbl

[41] Gasper G., Rahman M., Basic hypergeometric functions, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl