On One Approach to Investigation of Mechanical Systems
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents some results of qualitative analysis of Kirchhoff's differential equations describing motion of a rigid body in ideal fluid in Sokolov's case. The research methods are based on Lyapunov's classical results. Methods of computer algebra implemented in the computer algebra system (CAS) “Mathematica” were also used. Combination of these methods allowed us to obtain rather detailed information on qualitative properties for some classes of solutions of the equations.
Keywords: rigid body mechanics; completely integrable systems; qualitative analysis; invariant manifolds; stability; bifurcations; computer algebra.
@article{SIGMA_2006_2_a48,
     author = {Valentin D. Irtegov and Tatyana N. Titorenko},
     title = {On {One} {Approach} to {Investigation} of {Mechanical} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a48/}
}
TY  - JOUR
AU  - Valentin D. Irtegov
AU  - Tatyana N. Titorenko
TI  - On One Approach to Investigation of Mechanical Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a48/
LA  - en
ID  - SIGMA_2006_2_a48
ER  - 
%0 Journal Article
%A Valentin D. Irtegov
%A Tatyana N. Titorenko
%T On One Approach to Investigation of Mechanical Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a48/
%G en
%F SIGMA_2006_2_a48
Valentin D. Irtegov; Tatyana N. Titorenko. On One Approach to Investigation of Mechanical Systems. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a48/

[1] Dokl. Phys., 46:12 (2001), 888–889 | DOI | MR

[2] Cox D., Little J., O'Shea D., Ideals, varieties, and algorithms, Springer–Verlag, New York, 1997 | MR

[3] Harlamov P. V., “On motion in a fluid of a body bounded by a multiply connected surface”, Prikl. Mekh. Tekhn. Fiz., 4 (1963), 17–29 (in Russian)

[4] Kirchhoff G., Vorlesungen über Mathematische Physik. Mechanik, Bd. 1, B. Teubner, Leipzig, 1897 | Zbl

[5] Kovalev Yu. M., “On the stability of steady helical motions in a fluid of a body bounded by a multiply connected surface”, J. Appl. Math. Mech., 32:2 (1968), 272–275 | DOI | Zbl

[6] Kozlov V. V., Onishchenko D. A., “The motion in a perfect fluid of a body containing a moving point mass”, J. Appl. Math. Mech., 67:4 (2003), 553–564 | DOI | MR | Zbl

[7] Lamb H., Hydrodynamics, Dover Publ., New York, 1945

[8] Lyapunov A. M., On permanent helical motions of a rigid body in fluid, Collected Works, 1, USSR Acad. Sci., Moscow–Leningrad, 1954 (in Russian)

[9] Lyapunov A. M., Stability of motion, Academic Press, New York, 1966 | MR | Zbl

[10] Dokl. Phys., 49:10 (2004), 583–587 | DOI | MR

[11] Theoret. and Math. Phys., 129:1 (2001), 1335–1340 | DOI | MR | Zbl

[12] Rumyantsev V. V., “A comparison of three methods of constructing Lyapunov functions”, J. Appl. Math. Mech., 59:6 (1995), 873–877 | DOI | MR | Zbl

[13] Theoret. and Math. Phys., 34:2 (2003), 181–197 | DOI | MR | Zbl