@article{SIGMA_2006_2_a47,
author = {Alice Fialowski and Marc de Montigny},
title = {On {Deformations} and {Contractions} of {Lie} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a47/}
}
Alice Fialowski; Marc de Montigny. On Deformations and Contractions of Lie Algebras. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a47/
[1] Fialowski A., de Montigny M., “Contractions and deformations of Lie algebras”, J. Phys. A: Math. Gen., 38 (2005), 6335–6349 | DOI | MR | Zbl
[2] Gerstenhaber M., “On the deformation of rings and algebras”, Ann. Math., 79 (1964), 59–103 ; Gerstenhaber M., “On the deformation of rings and algebras II”, Ann. Math., 84 (1966), 1–19 ; Gerstenhaber M., “On the deformation of rings and algebras III”, Ann. Math., 88 (1968), 1–34 ; Gerstenhaber M., “On the deformation of rings and algebras IV”, 99 (1974), 257–276 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[3] Fialowski A., Schlichenmaier M., “Global deformations of the Witt algebra of Krichever–Novikov type”, Commun. Contemp. Math., 5 (2003), 921–945 ; ; Fialowski A., Schlichenmaier M., “Global geometric deformations of current algebras as Krichever–Novikov type algebras”, Comm. Math. Phys., 260 (2005), 579–612 ; arXiv:math.QA/0206114arXiv:math.QA/0412113 | DOI | MR | Zbl | DOI | MR | Zbl
[4] Inönü E., Wigner E. P., “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 510–524 ; Saletan E., “Contraction of Lie groups”, J. Math. Phys., 2 (1961), 1–21 ; Gilmore R., Lie groups, Lie algebras, and some of their applications, Chapter 10, Wiley, New York, 1974 ; Talman J. D., Special functions: a group theoretic approach, Benjamin, New York, 1968 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | MR | Zbl
[5] Onishchik A. L., Vinberg E. B., Lie groups and Lie algebras, Chapter 7, Enclycopaedia of Mathematical Sciences, 41, Springer, Berlin, 1991
[6] Weimar-Woods E., “Contractions, generalized Inönü–Wigner contractions and deformations of finite-dimensional Lie algebras”, Rev. Math. Phys., 12 (2000), 1505–1529 ; Lévy-Nahas M., “Deformation and contraction of Lie algebras”, J. Math. Phys., 8 (1967), 1211–1222 ; Lõhmus J., Tammelo R., “Contractions and deformations of space-time algebras. I. General theory and kinematical algebras”, Hadronic J., 20 (1997), 361–416 ; Fialowski A., O'Halloran J., “A comparison of deformations and orbit closure”, Comm. Algebra, 18 (1990), 4121–4140 | MR | Zbl | DOI | MR | Zbl | MR | Zbl | MR | Zbl
[7] Conatser C. W., “Contractions of the low-dimensional real Lie algebras”, J. Math. Phys., 13 (1972), 196–203 | DOI | Zbl
[8] Burde D., Steinhoff C., “Classification of orbit closures of 4-dimensional complex Lie algebras”, J. Algebra, 214 (1999), 729–739 | DOI | MR | Zbl
[9] Fialowski A., “Deformations of some infinite-dimensional Lie algebras”, J. Math. Phys., 31 (1990), 1340–1343 | DOI | MR | Zbl
[10] Lecomte P. B. A., Roger C., “Rigidity of current Lie algebras of complex simple type”, J. London Math. Soc. (2), 37 (1988), 232–240 | DOI | MR | Zbl
[11] Fialowski A., Penkava M., “Versal deformations of three-dimensional Lie algebras as $L_\infty$ algebras”, Commun. Contemp. Math., 7 (2005), 145–165 ; arXiv:math.RT/0303346 | DOI | MR | Zbl
[12] Goddard P., Olive D., Kac–Moody and Virasoro algebras, World Scientific, New York, 1988 ; Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Springer, New York, 1997 ; Tsvelik A. M., Quantum field theory in condensed matter physics, Cambridge Univ. Press, 2003 | MR | MR | MR | Zbl
[13] Krichever I. M., Novikov S. P., “Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142 ; Krichever I. M., Novikov S. P., “Virasoro-type algebras, Riemann surfaces and strings in Minkowski space”, Funct. Anal. Appl., 21 (1987), 294–307 ; Krichever I. M., Novikov S. P., “Algebras of Virasoro type, energy-momentum tensor and decomposition operators on Riemann surfaces”, Funct. Anal. Appl., 23:1 (1989), 19–33 | DOI | MR | Zbl | DOI | Zbl | DOI | MR | Zbl
[14] Majumdar P., “Inönü–Wigner contraction of Kac–Moody algebras”, J. Math. Phys., 34 (1993), 2059–2065 ; ; Olive D. I., Rabinovici E., Schwimmer A., “A class of string backgrounds as a semiclassical limit of WZW models”, Phys. Lett. B, 321 (1994), 361–364 ; arXiv:hep-th/9207057arXiv:hep-th/9311081 | DOI | MR | Zbl | DOI | MR