Scale-Dependent Functions, Stochastic Quantization and Renormalization
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a possibility to unify the methods of regularization, such as the renormalization group method, stochastic quantization etc., by the extension of the standard field theory of the square-integrable functions $\phi(b)\in L^2(\mathbb R^d)$ to the theory of functions that depend on coordinate $b$ and resolution $a$. In the simplest case such field theory turns out to be a theory of fields $\phi_a(b,\cdot)$ defined on the affine group $G:x'=ax+b$, $a>0,x,b\in\mathbb R^d$, which consists of dilations and translation of Euclidean space. The fields $\phi_a(b,\cdot)$ are constructed using the continuous wavelet transform. The parameters of the theory can explicitly depend on the resolution $a$. The proper choice of the scale dependence $g=g(a)$ makes such theory free of divergences by construction.
Keywords: wavelets; quantum field theory; stochastic quantization; renormalization.
@article{SIGMA_2006_2_a45,
     author = {Mikhail V. Altaisky},
     title = {Scale-Dependent {Functions,} {Stochastic} {Quantization} and {Renormalization}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a45/}
}
TY  - JOUR
AU  - Mikhail V. Altaisky
TI  - Scale-Dependent Functions, Stochastic Quantization and Renormalization
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a45/
LA  - en
ID  - SIGMA_2006_2_a45
ER  - 
%0 Journal Article
%A Mikhail V. Altaisky
%T Scale-Dependent Functions, Stochastic Quantization and Renormalization
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a45/
%G en
%F SIGMA_2006_2_a45
Mikhail V. Altaisky. Scale-Dependent Functions, Stochastic Quantization and Renormalization. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a45/

[1] Benzi R., Paladin G., Parizi G., Vulpiani A., “On multifractal nature of fully developed turbulence and chaotic systems”, J. Phys. A: Math. Gen., 17 (1984), 3521–3531 | DOI | MR

[2] Muzy J. F., Bacry E., Arneodo A., “Wavelets and multifractal formalism for singular signals: application to turbulence data”, Phys. Rev. Lett., 67 (1991), 3515–3518 | DOI

[3] Zimin V. D., “Hierarchic turbulence model”, Izv. Atmos. Ocean. Phys., 17 (1981), 941–946

[4] Goupillaud P., Grossmann A., Morlet J., “Cycle-octave and related transforms in seismic signal analysis”, Geoexploration, 23 (1984/85), 85–102 | DOI

[5] Carey A. L., “Square-integrable representations of non-unimodular groups”, Bull. Austr. Math. Soc., 15 (1976), 1–12 | DOI | MR | Zbl

[6] Duflo M., Moore C. C., “On regular representations of nonunimodular locally compact group”, J. Func. Anal., 21 (1976), 209–243 | DOI | MR | Zbl

[7] Frish U., Turbulence, Cambridge University Press, 1995 | MR

[8] Altaisky M. V., “Scale-dependent function in statistical hydrodynamics: a functional analysis point of view”, Eur. J. Phys. B, 8 (1999), 613–617 ; arXiv:chao-dyn/9707011 | DOI | MR

[9] Wilson K. G., “Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior”, Phys. Rev. B, 4 (1971), 3184–3205 | DOI | Zbl

[10] Wilson K. G., Kogut J., “Renormalization group and $\epsilon$-expansion”, Phys. Rep. C, 12 (1974), 77–200 | DOI

[11] Wilson K. G., “The renormalization group and critical phenomena”, Rev. Modern Phys., 55 (1983), 583–600 | DOI | MR

[12] Parisi G., Wu Y.-S., “Perturbation theory without gauge fixing”, Scientica Sinica, 24 (1981), 483–496 | MR

[13] Martin P. C., Sigia E. D., Rose H. A., “Statistical dynamics of classical systems”, Phys. Rev. A, 8 (1973), 423–437 | DOI

[14] Zinn-Justin J., “Renormalization and stochastic quantization”, Nuclear Phys. B, 275 (1986), 135–159 | DOI | MR

[15] Namiki M., Stochastic quantization, Springer, 1992 | MR

[16] Altaisky M. V., “Wavelet based regularization for Euclidean field theory”, Proc. of the 24th Int. Coll. “Group Theoretical Methods in Physics” (July 2002, Paris), IOP Conference Series, 173, eds. J.-P. Gazeau, R. Kerner,J.-P. Antoine, S. Metens and J.-Y. Thibon, 2003, 893–897; arXiv:hep-th/0305167

[17] Halpern M. B., “Universal continuum regularization of quantum field theory”, Progr. Theor. Phys. Suppl., 111 (1993), 163–184 | DOI | Zbl

[18] Altaisky M., “$\phi^4$-field theory on a Lie group”, Proc. 4th Int. Conf. “Frontiers of Fundamental Physics” (December 2000, Hyderabad), eds. B. G. Sidharth and M. V. Altaisky, Kluwer Academic, NY, 2001, 121–128 ; arXiv:hep-th/0007180

[19] Battle G., Wavelets and renormalization, World Scientific, 1989 | MR

[20] Federbush P. G., “A mass zero cluster expansion”, Comm. Math. Phys., 81 (1981), 327–340 | DOI | MR

[21] Federbush P. G., “A phase cell approach to Yang–Mills theory”, Comm. Math. Phys., 107 (1986), 319–329 | DOI | MR

[22] Gaite J., “Stochastic formulation of the renormalization group: supersymmetric structure and the topology of the space of couplings”, J. Phys. A: Math. Gen., 37 (2004), 10409–10419 ; arXiv:hep-th/0404212 | DOI | MR | Zbl

[23] Zinn-Justin J., Quantum field theory and critical phenomena, Oxford University Press, 1989 | MR

[24] Wegner F. G., Houghton A., “Renormalization group equations for critical phenomena”, Phys. Rev. A, 8 (1973), 401–412 | DOI

[25] Kubishin Yu., “Exact renormalization group approach to scalar and fermionic theories”, Intern. J. Modern Phys. B, 12 (1998), 1321–1341 | DOI | MR

[26] Best C., “Wavelet-induced renormalization group for Landau–Ginzburg model”, Nucl. Phys. B Proc. Suppl., 83–84 (2000), 848–850 ; arXiv:hep-lat/9909151

[27] Kovalev V. F., Shirkov D. V., “The Bogoliuobov renormalization group and solution symmetry in mathematical physics”, Phys. Rep., 352 (2001), 219–249 ; arXiv:hep-th/0001210 | DOI | MR | Zbl