Electroweak Interaction Model with an Undegenerate Double Symmetry
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The initial $P$-invariance of the electroweak interaction Lagrangian together with the low-energy results of the Weinberg–Salam model is provided by a local secondary symmetry. Among the transformation parameters of this symmetry there are both scalars, and pseudo-scalars with respect to the orthochronous Lorentz group. Such symmetry does admissible existence of a light (massless) axial gauge boson and its possible nonuniversal interaction with the leptons of various types.
Keywords: double symmetry; electroweak interactions; light axial gauge boson.
@article{SIGMA_2006_2_a44,
     author = {Leonid M. Slad},
     title = {Electroweak {Interaction} {Model} with an {Undegenerate} {Double} {Symmetry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a44/}
}
TY  - JOUR
AU  - Leonid M. Slad
TI  - Electroweak Interaction Model with an Undegenerate Double Symmetry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a44/
LA  - en
ID  - SIGMA_2006_2_a44
ER  - 
%0 Journal Article
%A Leonid M. Slad
%T Electroweak Interaction Model with an Undegenerate Double Symmetry
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a44/
%G en
%F SIGMA_2006_2_a44
Leonid M. Slad. Electroweak Interaction Model with an Undegenerate Double Symmetry. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a44/

[1] Slad L. M., “Double symmetries in field theories”, Mod. Phys. Lett. A, 15 (2000), 379–389 ; arXiv:hep-th/0003107 | DOI | MR

[2] Gell-Mann M., Levy M., “The axial vector current in beta decay”, Nuovo Cimento, 16 (1960), 705–726 | DOI | MR | Zbl

[3] Slad L. M., “Toward an infinite-component field theory with a double symmetry: Free fields”, Theor. Math. Phys., 129:1 (2001), 1369–1384 ; arXiv:hep-th/0111140 | DOI | MR | Zbl

[4] Slad L. M., “Toward an infinite-component field theory with a double symmetry: Interaction of fields”, Theor. Math. Phys., 133:1 (2002), 1363–1375 ; arXiv:hep-th/0210120 | DOI | MR | Zbl

[5] Slad L. M., “Double symmetry and infinite-component field theory”, Proceedinds of Fifth International Conference “Symmetry in Nonlinear Mathematical Physics”, Part 2 (June 23–29, 2003, Kyiv), Proceedings of Institute of Mathematics, 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych, and I. A. Yehorchenko, Kyiv, 2004, 947–954 ; arXiv:hep-th/0312273 | Zbl

[6] Slad L. M., “Mass spectra in the doubly symmetric theory of infinite-component fields”, Theor. Math. Phys., 142:1 (2005), 15–28 ; arXiv:hep-th/0312150 | DOI

[7] Ginzburg V. L., “On relativistic wave equations with mass spectrum”, Acta Physica Polonica, 15 (1956), 163–175 | MR | Zbl

[8] Gelfand I. M., Minlos R. A., Shapiro Z. Ya., Representations of the rotation and Lorenz group and their applications, The Macmillan Company, New York, 1963

[9] Pati J. C., Salam A., “Lepton number as the fourth “color””, Phys. Rev. D, 10 (1974), 275–289 | DOI

[10] Mohapatra R. N., Pati J. C., “Left-right gauge symmetry and an “isoconjugate” model of $CP$ violation”, Phys. Rev. D, 11 (1975), 566–571 | DOI

[11] Mohapatra R. N., Pati J. C., ““Natural” left-right symmetry”, Phys. Rev. D, 11 (1975), 2558–2561 | DOI

[12] Senjanovic G., Mohapatra R. N., “Exact left-right symmetry and spontaneous violation of parity”, Phys. Rev. D, 12 (1975), 1502–1505 | DOI

[13] Eidelman S. et al., “Review of particle physics”, Phys. Lett. B, 592 (2004), 1–1109 | DOI

[14] Weinberg S., “A model of leptons”, Phys. Rev. Lett., 19 (1967), 1264–1266 | DOI

[15] Adler S. L., “Axial-vector vertex in spinor electrodynamics”, Phys. Rev., 177 (1969), 2426–2438 | DOI

[16] Bell J., Jackiw R., “A PCAC puzzle: $\pi^{0}\rightarrow\gamma\gamma$ in the sigma model”, Nuovo Cimento A, 60 (1969), 47–61 | DOI

[17] Adler S. L., Bardeen W. A., “Absence of higher-order corrections in the anomalous axial-vector divergence equation”, Phys. Rev., 182 (1969), 1517–1536 | DOI

[18] Adler S. L., Anomalies, arXiv:hep-th/0411038

[19] Gross D. J., Jackiw R., “Effect of anomalies on quasi-renormalizable theories”, Phys. Rev. D, 6 (1972), 477–493 | DOI

[20] Bouchiat C., Iliopoulos J., Meyer Ph., “An anomaly-free version of Weinberg's model”, Phys. Lett. B, 38 (1972), 519–523 | DOI

[21] Geng C. Q., Marshak R. E., “Uniqueness of quark and lepton representations in the standard model from the anomalies viewpoint”, Phys. Rev. D, 39 (1989), 693–696 | DOI

[22] Fayet P., “Effects of the spin-1 partner of the goldstino (gravitino) on neutral current phenomenology”, Phys. Lett. B, 95 (1980), 285–289 | DOI

[23] Fayet P., “A la recherche d'un nouveau boson de spin un”, Nucl. Phys. B, 187 (1981), 184–204 | DOI

[24] Fayet P., “Extra $U(1)$'s and new forces”, Nucl. Phys. B, 347 (1990), 743–768 | DOI

[25] Boehm C., “Implications of a new light gauge boson for neutrino physics”, Phys. Rev. D, 70 (2004), 055007, 9 pp., ages | DOI

[26] Bellerive A., “Review of solar neutrino experiments”, Int. J. Mod. Phys. A, 19 (2004), 1167–1179 | DOI

[27] Marciano W. J., Parsa Z., “Neutrino-electron scattering theory”, J. Phys. G, 29 (2003), 2629–2646 | DOI

[28] Reines F., Curr H. S., Sobel H. W., “Detection of $\overline\nu_e-e$ scattering”, Phys. Rev. Lett., 37 (1976), 315–318 | DOI

[29] Daraktchieva Z. et al., “Final results on the neutrino magnetic moment from the MUNU experiment”, Phys. Lett. B, 615 (2005), 153–159

[30] Levine M. J., Park H. Y., Roskies R. Z., “High-precision evaluation of contributions to $g-2$ of the electron in sixth order”, Phys. Rev. D, 25 (1982), 2205–2207 | DOI

[31] Mohr P. J., Taylor B. N., “CODATA recommended values of the fundamental physical constants: 2002”, Rev. Mod. Phys., 77 (2005), 1–107 | DOI