@article{SIGMA_2006_2_a43,
author = {Stephen C. Anco},
title = {Hamiltonian {Flows} of {Curves} in $G/SO(N)$ and {Vector} {Soliton} {Equations} of {mKdV} and {Sine-Gordon} {Type}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a43/}
}
TY - JOUR AU - Stephen C. Anco TI - Hamiltonian Flows of Curves in $G/SO(N)$ and Vector Soliton Equations of mKdV and Sine-Gordon Type JO - Symmetry, integrability and geometry: methods and applications PY - 2006 VL - 2 UR - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a43/ LA - en ID - SIGMA_2006_2_a43 ER -
Stephen C. Anco. Hamiltonian Flows of Curves in $G/SO(N)$ and Vector Soliton Equations of mKdV and Sine-Gordon Type. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a43/
[1] Anco S. C., “Conservation laws of scaling-invariant field equations”, J. Phys. A: Math. Gen., 36 (2003), 8623–8638 ; arXiv:math-ph/0303066 | DOI | MR | Zbl
[2] Anco S. C., “Bi-Hamiltonian operators, integrable flows of curves using moving frames, and geometric map equations”, J. Phys. A: Math. Gen., 39 (2006), 2043–2072 ; arXiv:nlin.SI/0512051 | DOI | MR | Zbl
[3] Anco S. C., in preparation
[4] Anco S. C., Wang J.-P., in preparation
[5] Anco S. C., Wolf T.,, “Some symmetry classifications of hyperbolic vector evolution equations”, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 13–31 ; Erratum J. Nonlinear Math. Phys., 12 (2005), 607–608 ; arXiv:nlin.SI/0412015 | DOI | MR | DOI | MR | Zbl
[6] Athorne C., Fordy A., “Generalised KdV and mKdV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20 (1987), 1377–1386 | DOI | MR | Zbl
[7] Athorne C., “Local Hamiltonian structures of multicomponent KdV equations”, J. Phys. A: Math. Gen., 21 (1988), 4549–4556 | DOI | MR | Zbl
[8] Bakas I., Park Q.-H., Shin H.-J., “Lagrangian formulation of symmetric space sine-Gordon models”, Phys. Lett. B, 372 (1996), 45–52 ; arXiv:hep-th/9512030 | DOI | MR | Zbl
[9] Bishop R., “There is more than one way to frame a curve”, Amer. Math. Monthly, 82 (1975), 246–251 | DOI | MR | Zbl
[10] Chou K.-S., Qu C., “Integrable equations arising from motions of plane curves”, Phys. D, 162 (2002), 9–33 | DOI | MR | Zbl
[11] Chou K.-S., Qu C., “Integrable motion of space curves in affine geometry”, Chaos Solitons Fractals, 14 (2002), 29–44 | DOI | MR | Zbl
[12] Chou K.-S., Qu C., “Integrable equations arising from motions of plane curves. II”, J. Nonlinear Sci., 13 (2003), 487–517 | DOI | MR | Zbl
[13] Chou K.-S., Qu C., “Motion of curves in similarity geometries and Burgers–mKdV hierarchies”, Chaos Solitons Fractals, 19 (2004), 47–53 | DOI | MR | Zbl
[14] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, Wiley, 1993 | MR
[15] Foursov M. V., “Classification of certain integrable coupled potential KdV and modified KdV-type equations”, J. Math. Phys., 41 (2000), 6173–6185 | DOI | MR | Zbl
[16] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Amer. Math. Soc., Providence, 2001 | MR | Zbl
[17] Kobayashi S., Nomizu K., Foundations of differential geometry, Vols. I and II, Wiley, 1969 | MR | Zbl
[18] Olver P. J., Applications of Lie groups to differential equations, Springer, New York, 1986 | MR
[19] Pohlmeyer K., Rehren K.-H.,, “Reduction of the two-dimensional $\mathrm O(n)$ nonlinear $\sigma$-model”, J. Math. Phys., 20 (1979), 2628–2632 | DOI | MR
[20] Mari Beffa G., Sanders J., Wang J.-P., “Integrable systems in three-dimensional Riemannian geometry”, J. Nonlinear Sci., 12 (2002), 143–167 | DOI | MR | Zbl
[21] Sanders J., Wang J.-P.,, “Integrable systems in $n$ dimensional Riemannian geometry”, Mosc. Math. J., 3 (2003), 1369–1393 | MR | Zbl
[22] Sanders J., Wang J.-P., J. Difference Equ. Appl., 12:10 (2006), 983–995 | DOI | MR | Zbl
[23] Sergyeyev A., “The structure of cosymmetries and a simple proof of locality for hierarchies of symmetries of odd order evolution equations”, Proceedings of Fifth International Conference “Symmetry in Nonlinear Mathematical Physics”, Part 1 (June 23–29, 2003, Kyiv), Proceedings of Institute of Mathematics, 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych and I. A. Yehorchenko, Kyiv, 2004, 238–245 | MR | Zbl
[24] Sergyeyev A., “Why nonlocal recursion operators produce local symmetries: new results and applications”, J. Phys. A: Math. Gen., 38 (2005), 3397–3407 ; arXiv:nlin.SI/0410049 | DOI | MR | Zbl
[25] Sergyeyev A., Demskoi D., The Sasa–Satsuma (complex mKdV II) and the complex sine-Gordon II equation revisited: recursion operators, nonlocal symmetries and more, arXiv:nlin.SI/0512042
[26] Sharpe R. W., Differential geometry, Springer-Verlag, New York, 1997 | MR | Zbl
[27] Sokolov V. V., Wolf T., “Classification of integrable vector polynomial evolution equations”, J. Phys. A: Math. Gen., 34 (2001), 11139–11148 | DOI | MR | Zbl
[28] Tsuchida T., Wolf T., “Classification of polynomial integrable systems of mixed scalar and vector evolution equations. I”, J. Phys. A: Math. Gen., 38 (2005), 7691–7733 ; arXiv:nlin.SI/0412003 | DOI | MR | Zbl
[29] Wang J.-P., Symmetries and conservation laws of evolution equations, PhD Thesis, Vrije Universiteit, Amsterdam, 1998
[30] Wang J.-P., “Generalized Hasimoto transformation and vector sine-Gordon equation”, SPT 2002: Symmetry and Perturbation Theory (Cala Gonone), eds. S. Abenda, G. Gaeta and S. Walcher, World Scientific, River Edge, NJ, 2002, 276–283 | MR