Hamiltonian Flows of Curves in $G/SO(N)$ and Vector Soliton Equations of mKdV and Sine-Gordon Type
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The bi-Hamiltonian structure of the two known vector generalizations of the mKdV hierarchy of soliton equations is derived in a geometrical fashion from flows of non-stretching curves in Riemannian symmetric spaces $G/SO(N)$. These spaces are exhausted by the Lie groups $G=SO(N+1),SU(N)$. The derivation of the bi-Hamiltonian structure uses a parallel frame and connection along the curve, tied to a zero curvature Maurer–Cartan form on $G$, and this yields the mKdV recursion operators in a geometric vectorial form. The kernel of these recursion operators is shown to yield two hyperbolic vector generalizations of the sine-Gordon equation. The corresponding geometric curve flows in the hierarchies are described in an explicit form, given by wave map equations and mKdV analogs of Schrödinger map equations.
Keywords: bi-Hamiltonian; soliton equation; recursion operator; symmetric space; curve flow; wave map; Schrödinger map; mKdV map.
@article{SIGMA_2006_2_a43,
     author = {Stephen C. Anco},
     title = {Hamiltonian {Flows} of {Curves} in $G/SO(N)$ and {Vector} {Soliton} {Equations} of {mKdV} and {Sine-Gordon} {Type}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a43/}
}
TY  - JOUR
AU  - Stephen C. Anco
TI  - Hamiltonian Flows of Curves in $G/SO(N)$ and Vector Soliton Equations of mKdV and Sine-Gordon Type
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a43/
LA  - en
ID  - SIGMA_2006_2_a43
ER  - 
%0 Journal Article
%A Stephen C. Anco
%T Hamiltonian Flows of Curves in $G/SO(N)$ and Vector Soliton Equations of mKdV and Sine-Gordon Type
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a43/
%G en
%F SIGMA_2006_2_a43
Stephen C. Anco. Hamiltonian Flows of Curves in $G/SO(N)$ and Vector Soliton Equations of mKdV and Sine-Gordon Type. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a43/

[1] Anco S. C., “Conservation laws of scaling-invariant field equations”, J. Phys. A: Math. Gen., 36 (2003), 8623–8638 ; arXiv:math-ph/0303066 | DOI | MR | Zbl

[2] Anco S. C., “Bi-Hamiltonian operators, integrable flows of curves using moving frames, and geometric map equations”, J. Phys. A: Math. Gen., 39 (2006), 2043–2072 ; arXiv:nlin.SI/0512051 | DOI | MR | Zbl

[3] Anco S. C., in preparation

[4] Anco S. C., Wang J.-P., in preparation

[5] Anco S. C., Wolf T.,, “Some symmetry classifications of hyperbolic vector evolution equations”, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 13–31 ; Erratum J. Nonlinear Math. Phys., 12 (2005), 607–608 ; arXiv:nlin.SI/0412015 | DOI | MR | DOI | MR | Zbl

[6] Athorne C., Fordy A., “Generalised KdV and mKdV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20 (1987), 1377–1386 | DOI | MR | Zbl

[7] Athorne C., “Local Hamiltonian structures of multicomponent KdV equations”, J. Phys. A: Math. Gen., 21 (1988), 4549–4556 | DOI | MR | Zbl

[8] Bakas I., Park Q.-H., Shin H.-J., “Lagrangian formulation of symmetric space sine-Gordon models”, Phys. Lett. B, 372 (1996), 45–52 ; arXiv:hep-th/9512030 | DOI | MR | Zbl

[9] Bishop R., “There is more than one way to frame a curve”, Amer. Math. Monthly, 82 (1975), 246–251 | DOI | MR | Zbl

[10] Chou K.-S., Qu C., “Integrable equations arising from motions of plane curves”, Phys. D, 162 (2002), 9–33 | DOI | MR | Zbl

[11] Chou K.-S., Qu C., “Integrable motion of space curves in affine geometry”, Chaos Solitons Fractals, 14 (2002), 29–44 | DOI | MR | Zbl

[12] Chou K.-S., Qu C., “Integrable equations arising from motions of plane curves. II”, J. Nonlinear Sci., 13 (2003), 487–517 | DOI | MR | Zbl

[13] Chou K.-S., Qu C., “Motion of curves in similarity geometries and Burgers–mKdV hierarchies”, Chaos Solitons Fractals, 19 (2004), 47–53 | DOI | MR | Zbl

[14] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, Wiley, 1993 | MR

[15] Foursov M. V., “Classification of certain integrable coupled potential KdV and modified KdV-type equations”, J. Math. Phys., 41 (2000), 6173–6185 | DOI | MR | Zbl

[16] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Amer. Math. Soc., Providence, 2001 | MR | Zbl

[17] Kobayashi S., Nomizu K., Foundations of differential geometry, Vols. I and II, Wiley, 1969 | MR | Zbl

[18] Olver P. J., Applications of Lie groups to differential equations, Springer, New York, 1986 | MR

[19] Pohlmeyer K., Rehren K.-H.,, “Reduction of the two-dimensional $\mathrm O(n)$ nonlinear $\sigma$-model”, J. Math. Phys., 20 (1979), 2628–2632 | DOI | MR

[20] Mari Beffa G., Sanders J., Wang J.-P., “Integrable systems in three-dimensional Riemannian geometry”, J. Nonlinear Sci., 12 (2002), 143–167 | DOI | MR | Zbl

[21] Sanders J., Wang J.-P.,, “Integrable systems in $n$ dimensional Riemannian geometry”, Mosc. Math. J., 3 (2003), 1369–1393 | MR | Zbl

[22] Sanders J., Wang J.-P., J. Difference Equ. Appl., 12:10 (2006), 983–995 | DOI | MR | Zbl

[23] Sergyeyev A., “The structure of cosymmetries and a simple proof of locality for hierarchies of symmetries of odd order evolution equations”, Proceedings of Fifth International Conference “Symmetry in Nonlinear Mathematical Physics”, Part 1 (June 23–29, 2003, Kyiv), Proceedings of Institute of Mathematics, 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych and I. A. Yehorchenko, Kyiv, 2004, 238–245 | MR | Zbl

[24] Sergyeyev A., “Why nonlocal recursion operators produce local symmetries: new results and applications”, J. Phys. A: Math. Gen., 38 (2005), 3397–3407 ; arXiv:nlin.SI/0410049 | DOI | MR | Zbl

[25] Sergyeyev A., Demskoi D., The Sasa–Satsuma (complex mKdV II) and the complex sine-Gordon II equation revisited: recursion operators, nonlocal symmetries and more, arXiv:nlin.SI/0512042

[26] Sharpe R. W., Differential geometry, Springer-Verlag, New York, 1997 | MR | Zbl

[27] Sokolov V. V., Wolf T., “Classification of integrable vector polynomial evolution equations”, J. Phys. A: Math. Gen., 34 (2001), 11139–11148 | DOI | MR | Zbl

[28] Tsuchida T., Wolf T., “Classification of polynomial integrable systems of mixed scalar and vector evolution equations. I”, J. Phys. A: Math. Gen., 38 (2005), 7691–7733 ; arXiv:nlin.SI/0412003 | DOI | MR | Zbl

[29] Wang J.-P., Symmetries and conservation laws of evolution equations, PhD Thesis, Vrije Universiteit, Amsterdam, 1998

[30] Wang J.-P., “Generalized Hasimoto transformation and vector sine-Gordon equation”, SPT 2002: Symmetry and Perturbation Theory (Cala Gonone), eds. S. Abenda, G. Gaeta and S. Walcher, World Scientific, River Edge, NJ, 2002, 276–283 | MR