On Transitive Systems of Subspaces in a Hilbert Space
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Methods of $*$-representations in Hilbert space are applied to study of systems of $n$ subspaces in a linear space. It is proved that the problem of description of $n$-transitive subspaces in a finite-dimensional linear space is $*$-wild for $n\geq 5$.
Keywords: algebras generated by projections; irreducible inequivalent representations; transitive nonisomorphic systems of subspaces.
@article{SIGMA_2006_2_a41,
     author = {Yuliya P. Moskaleva and Yurii S. Samoilenko},
     title = {On {Transitive} {Systems} of {Subspaces} in {a~Hilbert} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a41/}
}
TY  - JOUR
AU  - Yuliya P. Moskaleva
AU  - Yurii S. Samoilenko
TI  - On Transitive Systems of Subspaces in a Hilbert Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a41/
LA  - en
ID  - SIGMA_2006_2_a41
ER  - 
%0 Journal Article
%A Yuliya P. Moskaleva
%A Yurii S. Samoilenko
%T On Transitive Systems of Subspaces in a Hilbert Space
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a41/
%G en
%F SIGMA_2006_2_a41
Yuliya P. Moskaleva; Yurii S. Samoilenko. On Transitive Systems of Subspaces in a Hilbert Space. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a41/

[1] Halmos P. R., “Two subspaces”, Trans. Amer. Math. Soc., 144 (1969), 381–389 | DOI | MR | Zbl

[2] Halmos P. R., “Ten problems in Hilbert space”, Bull. Amer. Math. Soc., 76 (1970), 887–933 | DOI | MR | Zbl

[3] Brenner S., “Endomorphism algebras of vector spaces with distinguished sets of subspaces”, J. Algebra, 6 (1967), 100–114 | DOI | MR | Zbl

[4] Gel'fand I. M., Ponomarev V. A., “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space”, Hilbert space operators and operator algebras (Proc. Internat. Conf., Tihany, 1970), Colloq. Math. Soc. János Bolyai, 5, North-Holland, Amsterdam, 1970, 163–237 | MR

[5] Nazarova L. A., “Representations of a quadruple”, Izv. AN SSSR, 31:6 (1967), 1361–1378 (in Russian) | MR | Zbl

[6] Enomoto M., Watatani Ya., Relative position of four subspaces in a Hilbert space, arXiv:math.OA/0404545 | MR

[7] Funct. Anal. Appl., 36:3 (2002), 182–195 | DOI | MR | Zbl

[8] Kruglyak S. A., Samoǐlenko Yu. S., “On the complexity of description of representations of $*$-algebras generated by idempotents”, Proc. Amer. Math. Soc., 128 (2000), 1655–1664 | DOI | MR

[9] Ostrovskyi V. L., Samoǐlenko Yu. S., “Introduction to the theory of representations of finitely presented $*$-algebras. I: Representations by bounded operators”, Rev. Math. Math. Phys., 11:1 (1999), 1–261, Harwood Acad. Publs. | DOI | MR

[10] Ukrainian Math. J., 55:9 (2003), 1480–1496 | DOI | MR | Zbl

[11] Moskaleva Yu. P., Samoǐlenko Yu. S., “Systems of $n$ subspaces and representations of $*$-algebras generated by projections”, Methods Funct. Anal. Topology, 12:1 (2006), 57–73 | MR | Zbl

[12] Moskaleva Yu. P., “On $*$-representations of the algebra $\mathcal P_{4,\rm abo,\tau}$”, Uchenye Zapiski Tavricheskogo Natsional'nogo Universiteta imeni Vernadskogo, Seriya Matem. Mech. Inform. Kibern., 2005, no. 1, 27–35 (in Russian)