Dirichlet and Neumann Problems for String Equation, Poncelet Problem and Pell–Abel Equation
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider conditions for uniqueness of the solution of the Dirichlet or the Neumann problem for 2-dimensional wave equation inside of bi-quadratic algebraic curve. We show that the solution is non-trivial if and only if corresponding Poncelet problem for two conics associated with the curve has periodic trajectory and if and only if corresponding Pell–Abel equation has a solution.
Keywords: Dirichlet problem; Neumann problem; string equation; Poncelet problem; Pell–Abel equation.
@article{SIGMA_2006_2_a40,
     author = {Vladimir P. Burskii and Alexei S. Zhedanov},
     title = {Dirichlet and {Neumann} {Problems} for {String} {Equation,} {Poncelet} {Problem} and {Pell{\textendash}Abel} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a40/}
}
TY  - JOUR
AU  - Vladimir P. Burskii
AU  - Alexei S. Zhedanov
TI  - Dirichlet and Neumann Problems for String Equation, Poncelet Problem and Pell–Abel Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a40/
LA  - en
ID  - SIGMA_2006_2_a40
ER  - 
%0 Journal Article
%A Vladimir P. Burskii
%A Alexei S. Zhedanov
%T Dirichlet and Neumann Problems for String Equation, Poncelet Problem and Pell–Abel Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a40/
%G en
%F SIGMA_2006_2_a40
Vladimir P. Burskii; Alexei S. Zhedanov. Dirichlet and Neumann Problems for String Equation, Poncelet Problem and Pell–Abel Equation. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a40/

[1] Baxter R., Exactly solvable models in statistical mechanics, Academic Press, London, 1982 | MR | Zbl

[2] Berger M., Géométrie, CEDIC, Paris, 1978

[3] Burskii V. P., Investigation methods of boundary value problems for general differential equations, Naukova Dumka, Kyiv, 2002 (in Russian)

[4] Burskii V. P., Zhedanov A. S., “The Dirichlet and the Poncelet problems”, RIAM Symposium No.16ME-S1 “Physics and Mathematical Structures of Nonlinear Waves” (November 15–17, 2004, Kyushu University, Kasuga, Fukuoka, Japan), 2004, 22–26; see here

[5] Francoise J. P., Ragnisco O., “An iterative process on quartics and integrable symplectic maps”, Symmetries and Integrability of Difference equations (1996, Canterbury), London Math. Soc. Lecture Note Ser., 255, eds. P. A. Clarkson and F. W. Nijhoff, Cambridge Univ. Press, Cambridge, 1999, 56–63 | MR | Zbl

[6] JETP Lett., 44:5 (1986), 304–307 | MR

[7] Griffiths P., Harris J., “On Cayley's explicit solution to Poncelet's porism”, Enseign. Math. (2), 24 (1978), 31–40 | MR | Zbl

[8] Iatrou A., Roberts J. A. G., “Integrable mappings of the plane preserving biquadratic invariant curves II”, Nonlinearity, 15 (2002), 459–489 | DOI | MR | Zbl

[9] John F., “The Dirichlet problem for a hyperbolic equation”, Amer. J. Math., 63 (1941), 141–154 | DOI | MR

[10] St. Petersburg Math. J., 13:6 (2001), 893–938 | MR

[11] St. Petersburg Math. J., 15:4 (2004), 587–602 | DOI | MR | Zbl

[12] St. Petersburg Math. J., 4:2 (1993), 201–249 | MR

[13] Funct. Anal. Appl., 22:2 (1988), 83–93 | DOI | MR | Zbl

[14] Whittacker E. T., Watson G. N., A course of modern analysis, Cambridge, 1927