On the Generalized Maxwell–Bloch Equations
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new Hamiltonian structure of the Maxwell–Bloch equations is described. In this setting the Maxwell–Bloch equations appear as a member of a family of generalized Maxwell–Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell–Bloch system being the member corresponding to $SU(2)$. The Hamiltonian structure is then used in the construction of a new family of symmetries and the associated conserved quantities of the Maxwell–Bloch equations.
Keywords: Maxwell–Bloch equations; Hamiltonian structures; symmetries; conserved quantities.
@article{SIGMA_2006_2_a37,
     author = {Pavle Saksida},
     title = {On the {Generalized} {Maxwell{\textendash}Bloch} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a37/}
}
TY  - JOUR
AU  - Pavle Saksida
TI  - On the Generalized Maxwell–Bloch Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a37/
LA  - en
ID  - SIGMA_2006_2_a37
ER  - 
%0 Journal Article
%A Pavle Saksida
%T On the Generalized Maxwell–Bloch Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a37/
%G en
%F SIGMA_2006_2_a37
Pavle Saksida. On the Generalized Maxwell–Bloch Equations. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a37/

[1] Reyman A. G., Semenov-Tian-Shansky M. A., “Reduction of Hamiltonian systems, affine Lie algebras and Lax equations I”, Invent. Math., 54 (1979), 81–100 | DOI | MR | Zbl

[2] Reyman A. G., Semenov-Tian-Shansky M.A.,, “Integrable systems II”, Encyclopaedia of Mathematical Sciences, 16, eds. V. I. Arnold and S. P. Novikov, Springer, Berlin, 1994, 116–259 | MR

[3] Saksida P., “Nahm's equations and generalizations of the Neumann system”, Proc. Lond. Math. Soc., 78 (1999), 701–720 | DOI | MR | Zbl

[4] Novikov S. P., “The Hamiltonian formalism and multivalued analogue of Morse theory”, Uspekhi Mat. Nauk, 37:5(227) (1982), 3–49 (in Russian) | MR | Zbl

[5] Marsden J. E., Lectures on mechanics, London Mathematical Society Lecture Note Series, 174, Cambridge University Press, Cambridge, 1992 | MR | Zbl

[6] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry, Springer, New York, 1994 | MR

[7] Saksida P., “Maxwell–Bloch equations, C. Neumann systems and Kaluza–Klein theory”, J. Phys. A: Math. Gen., 38 (2005), 10321–10344 | DOI | MR | Zbl

[8] Kostant B., “Quantization and unitary representations”, Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 179, eds. C. T. Taam, Springer, Berlin, 1970, 87–208 | MR

[9] Park Q-Han, Shin H. J., “Complex sine-Gordon equation in coherent optical pulse propagation”, J. Korean Phys. Soc., 30 (1997), 336–340 ; arXiv:solv-int/9904007

[10] Park Q-Han, Shin H. J., “Field theory for coherent optical pulse propagation”, Phys. Rev. A, 57 (1998), 4621–4642 ; arXiv:solv-int/9709002 | DOI

[11] Abraham R., Marsden J. E., Foundations of Mechanics, 2nd ed., Benjamin-Cummings, Reading MA, 1978 | MR | Zbl

[12] Lamb G. L., “Phase variation in coherent-optical-pulse propagation”, Phys. Rev. Lett., 31 (1973), 196–199 | DOI

[13] Lamb G. L., “Coherent-optical-pulse propagation as an inverse problem”, Phys. Rev. A, 9 (1974), 422–430 | DOI

[14] Caudrey P. J., Eilbeck J. C., Gibbon J. D., “An $N$-soliton solution of a nonlinear optics equation derived by inverse method”, Lett. Nuovo Cimento, 8 (1973), 773–779

[15] Gabitov I. R., Zakharov V. E., Mikhailov A. V., “The Maxwell–Bloch equation and the method of the inverse scattering problem”, Teoret. Mat. Fiz., 63:1 (1985), 11–31 (in Russian) | MR

[16] Saksida P., “Neumann system, spherical pendulum and magnetic fields”, J. Phys. A: Math. Gen., 35 (2002), 5237–5253 | DOI | MR | Zbl

[17] Saksida P., “Integrable anharmonic oscillators on spheres and hyperbolic spaces”, Nonlinearity, 14 (2001), 977–994 | DOI | MR | Zbl

[18] Holm D., Kovačič G., “Homoclinic chaos in a laser-matter system”, Phys. D, 56 (1992), 270–300 | DOI | MR | Zbl

[19] Naudts J., Kuna M., Special solutions of nonlinear von Neumann equations, arXiv:math-ph/0506020

[20] Czachor M., Kuna M., Leble S. B., Naudts J., “Nonlinear von Neumann-type equations”, Trends in Quantum Mechanics (1998, Goslar), World Sci. Publishing, River Edge, NJ, 2000, 209–226 ; arXiv:quant-ph/9904110 | MR | Zbl

[21] Nambu Y., “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7 (1973), 2405–2412 | DOI | MR | Zbl