@article{SIGMA_2006_2_a36,
author = {Alexey V. Toporensky},
title = {Regular and {Chaotic} {Regimes} in {Scalar} {Field} {Cosmology}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a36/}
}
Alexey V. Toporensky. Regular and Chaotic Regimes in Scalar Field Cosmology. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a36/
[1] Kantz H., Grassberger P., “Repellers, semiattractors and long lived chaotic transients”, Phys. D, 17 (1985), 75–93 | DOI | MR
[2] Gaspard P., Rice S. A., “Scattering from a classically chaotic repellor”, J. Chem. Phys., 90 (1989), 2225–2241 | DOI | MR
[3] Page D. N., “A fractal set of perpetually bouncing Universes?”, Classical Quantum Gravity, 1 (1984), 417–441 | DOI | MR
[4] Cornish N. J., Shellard E. P. S., “Chaos in quantum cosmology”, Phys. Rev. Lett., 81 (1998), 3571–3574 | DOI
[5] Kamenshchik A. Yu., Khalatnikov I. M., Toporensky A. V., “Simplest cosmological model with the scalar field. 2. Influence of cosmological constant gr-qc/9801082.”, Internat. J. Modern Phys. D, 7 (1998), 129–138 ; arXiv:gr-qc/9801082 | DOI | MR | Zbl
[6] Kamenshchik A. Yu., Khalatnikov I. M., Savchenko S. V., Toporensky A. V., “Topological entropy for some isotropic cosmological models”, Phys. Rev. D, 59 (1999), 123516, 28 pp., ages ; arXiv:gr-qc/9809048 | DOI | MR
[7] Toporensky A. V., “Chaos in closed isotropic cosmological models with steep scalar field potentials”, Internat. J. Modern Phys. D, 8 (1999), 739–750 ; arXiv:gr-qc/9812005 | DOI
[8] Linde A. D., Particle physics and inflationary cosmology, Harwood Academic, 1990
[9] Belinsky V. A., Grishchuk L. P., Zeldovich Ya. B., Khalatnikov I. M., “Inflationary stages in cosmological models with scalar fields”, JETP, 89 (1985), 346–360 (in Russian)
[10] Belinsky V. A., Khalatnikov I. M., “On the degree of generality of inflationary solutions in cosmological models with a scalar field”, Sov. Phys. JETP, 93 (1987), 441–472 | MR
[11] Belinsky V. A., Ishihara H., Khalatnikov I. M., Sato H., “On the degree of generality of inflation in Friedman cosmological models with a massive scalar field”, Progr. Theoret. Phys., 79 (1988), 676–684 | DOI
[12] Turner M., “Coherent scalar field oscillations in an expanding Universe”, Phys. Rev. D, 28 (1983), 1243–1256 | DOI | MR
[13] Starobinsky A. A., “On a nonsingular isotropic cosmological model”, Sov. Astron. Lett., 4 (1978), 82–84
[14] Cornish N., Levin J., “Chaos, fractals and inflation”, Phys. Rev. D, 53 (1996), 3022–3032 ; arXiv:astro-ph/9510010 | DOI
[15] Kamenshchik A. Yu., Khalatnikov I. M., Toporensky A. V., “Simplest cosmological model with the scalar field”, Internat. J. Modern Phys. D, 6 (1997), 673–692 ; arXiv:gr-qc/9801064 | DOI | MR
[16] Maartens R., “Cosmological dynamics on the brane”, Phys. Rev. D, 62 (2000), 084023, 24 pp., ages ; arXiv:hep-th/0004166 | DOI | MR
[17] Damour T., Mukhanov V. F., “Inflation without slow roll”, Phys. Rev. Lett., 80 (1998), 3440–3443 ; arXiv:gr-qc/9712061 | DOI | MR | Zbl
[18] Pavluchenko S. A., Toporensky A. V., “Chaos in FRW cosmology with gently sloping scalar field potential”, Gravitation and Cosmology, 6 (2000), 241–245 ; arXiv:gr-qc/9911039
[19] Kamenshchik A. Yu., Khalatnikov I. M., Toporensky A. V., “Complex inflaton field in quantum cosmology”, Internat. J. Modern Phys. D, 6 (1997), 649–672 ; arXiv:gr-qc/9801039 | DOI | MR
[20] Randall L., Sundrum R., “An alternative to compactification”, Phys. Rev. Lett., 83 (1999), 4690–4693 ; arXiv:/hep-th/9906064 | DOI | MR | Zbl
[21] Binetruy P., Deffayet C., Ellwanger U., Langlois D., “Brane cosmological evolution in a bulk with cosmological constant”, Phys. Lett. B, 477 (2000), 285–291 ; arXiv:hep-th/9910219 | DOI | MR
[22] Toporensky A. V., Tretyakov P. V., Ustiansky V. O., “New properties of scalar field dynamics in brane isotropic cosmological models”, Astron. Lett., 29 (2003), 1–5 ; arXiv:gr-qc/0207091 | DOI
[23] Belinsky V. A., Khalatnikov I. M., Lifschitz E. M., “Oscillators approach to a singular point in the relativistic cosmology”, Adv. Phys., 19 (1970), 525–573 | DOI
[24] Toporensky A. V., Ustiansky V. O., Dynamics of Bianchi IX universe with massive scalar field, arXiv:gr-qc/9907047
[25] Antoniadis I., Rizos J., Tamvakis K., “Singularity-free cosmological solutions of the superstring effective action”, Nucl. Phys. B, 415 (1994), 497–514 ; arXiv:hep-th/9305025 | DOI
[26] Rizos J., Tamvakis K., “On the existence of singularity-free solutions in quartic gravity”, Phys. Lett. B, 326 (1994), 57–61 ; arXiv:gr-qc/9401023 | DOI | MR
[27] Alexeyev S. O., Toporensky A. V., Ustiansky V. O., “Non-singular cosmological models in string gravity with constant dilaton and second order curvature corrections”, Classical Quantum Gravity, 17 (2000), 2243–2254 ; arXiv:gr-qc/9912071 | DOI | MR | Zbl
[28] Singh P., Toporensky A. V., “Big crunch avoidance in $k=1$ semiclassical loop quantum cosmology”, Phys. Rev. D, 69 (2004), 104008, 5 pp., ages ; arXiv:gr-qc/0312110 | DOI
[29] Damour T., Polyakov A., “String theory and gravity”, Gen. Relativity Gravitation, 26 (1994), 1171–1176 ; arXiv:gr-qc/9411069 | DOI | MR
[30] Bento M., Bertolami O., “Cosmological solutions of higher-curvature string effective theories with dilaton”, Phys. Lett. B, 368 (1996), 198–201 ; arXiv:gr-qc/9503057 | DOI | MR
[31] Bojowald M., “The semiclassical limit of loop quantum cosmology”, Classical Quantum Gravity, 18 (2001), L109–L116 ; arXiv:gr-qc/0105113 | DOI | MR | Zbl
[32] Bojowald M., “Isotropic loop quantum cosmology”, Classical Quantum Gravity, 19 (2002), 2717–2742 ; arXiv:gr-qc/0202077 | DOI | MR