@article{SIGMA_2006_2_a34,
author = {Marijan Milekovi\'c and Stjepan Meljanac and Andjelo Samsarov},
title = {Calogero {Model(s)} and {Deformed} {Oscillators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a34/}
}
Marijan Mileković; Stjepan Meljanac; Andjelo Samsarov. Calogero Model(s) and Deformed Oscillators. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a34/
[1] Mattis D. C., The many-body problem: 70 years of exactly solved quantum many-body problems, World Scientific, Singapore, 1993 | MR | Zbl
[2] Sutherland B., Beautiful models, World Scientific, Singapore, 2004 | MR | Zbl
[3] Calogero F., “Ground state of one-dimensional $N$-body system”, J. Math. Phys., 10 (1969), 2197–2200 | DOI | MR
[4] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversly quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR
[5] Van Dijen J. F., Vinet L. (eds.), Calogero–Moser–Sutherland models, CRM Series in Mathematical Physics, 25, Springer, Berlin, 2000 | MR
[6] Kawakami N., Critical properties of quantum many-body systems with $1/r^2$ interaction, arXiv:cond-mat/9402011
[7] Gibbons G. W., Townsend P. K., “Black holes and Calogero models”, Phys. Lett. B, 454 (1999), 187–192 ; arXiv:hep-th/9812034 | DOI | MR | Zbl
[8] Sutherland B., “Quantum many-body problem in one dimension: ground state”, J. Math. Phys., 12 (1971), 246–250 | DOI
[9] Gomis J., Kapustin A., “Two-dimensional unoriented strings and matrix models”, JHEP, 06 (2004), 002, 38 pp., ages ; arXiv:hep-th/0310195 | DOI | MR
[10] Gurappa N., Panigrahi P. P., “Equivalence of the Calogero–Sutherland model to free harmonic oscillators”, Phys. Rev. B, 59 (1999), R2490–R2493 ; arXiv:cond-mat/9710035 | DOI
[11] Ezung M., Gurappa N., Khare A., Panigrahi P. K., “Quantum many-body systems with nearest and next-to-nearest neighbor long-range interaction”, Phys. Rev. B, 71 (2005), 125121, 8 pp., ages ; arXiv:cond-mat/0007005 | DOI
[12] Sutherland B., “Exact results for a quantum many-body problem in one dimension II”, Phys. Rev. A, 5 (1972), 1372–1376 | DOI
[13] Hallnas M., Langmann E., Explicit formulas for the eigenfunctios of the $N$-body Calogero model, arXiv:math-ph/0511040 | MR
[14] Brink L., Hansson T. H., Vasiliev M. A., “Explicit solution to the $N$-body Calogero problem”, Phys. Lett. B, 286 (1992), 109–111 ; arXiv:hep-th/9206049 | DOI | MR
[15] Meljanac S., Mileković M., Samsarov A., “A multispecies Calogero model hep-th/0307126.”, Phys. Lett. B, 573 (2003), 202–208 ; arXiv:hep-th/0307126 | DOI | MR | Zbl
[16] Meljanac S., Mileković M., Samsarov A., Stojić M., “Interacting families of Calogero-type particles and SU(1,1) algebra”, Modern Phys. Lett. B, 18 (2004), 603–612 | DOI | Zbl
[17] Meljanac S., Mileković M., Samsarov A., “Generalized Calogero model in arbitrary dimensions”, Phys. Lett. B, 594 (2004), 241–246 ; arXiv:hep-th/0405131 | DOI | MR
[18] Haldane F. D. M., ““Fractional statistics” in arbitrary dimensions: a generalization of the Pauli principle”, Phys. Rev. Lett., 67 (1991), 937–940 | DOI | MR | Zbl
[19] Bernard D., Wu Y.-S., “A note on statistical interactions and the thermodynamical Bethe ansatz”, New Developments of Integrable Systems and Long-Ranged interaction Models, Nankai Lectures on Mathematical Physics, eds. M.-L. Ge and Y.-S. Wu, 1995, 10–21 ; arXiv:cond-mat/9404025 | Zbl
[20] Murthy M. V. N., Shankar R., “Thermodynamics of a one-dimensional ideal gas with fractional exclusion statistics”, Phys. Rev. Lett., 73 (1994), 3331–3334 ; arXiv:cond-mat/9404096 | DOI | MR | Zbl
[21] Furtlehner C., Ouvry S., “Calogero model for distinguishable particles”, Modern Phys. Lett. A, 9 (1995), 503–509 ; arXiv:hep-th/9407107 | DOI | MR
[22] Sen D., “A multispecies Calogero–Sutherland model”, Nucl. Phys. B, 479 (1996), 554–574 | DOI | MR | Zbl
[23] Mashkevic S., “Towards a quantum-mechanical model for multispecies exclusion statistics”, Phys. Lett. A, 233 (1997), 30–36 | DOI | MR | Zbl
[24] Guhr T., Kohler H., “Supersymmetry and models for two kinds of interacting particles”, Phys. Rev. E, 71 (2005), 045102, 4 pp., ages ; arXiv:math-ph/0408033 | DOI
[25] Meljanac S., Samsarov A., “Matrix oscillator and Calogero-type models”, Phys. Lett. B, 600 (2004), 179–184 ; arXiv:hep-th/0408241 | DOI | MR
[26] Bardek V., Jonke L., Meljanac S., Mileković M., “Calogero model, deformed oscillators and the collapse”, Phys. Lett. B, 531 (2002), 311–315 ; arXiv:hep-th/0107053 | DOI | MR | Zbl
[27] Meljanac S., Mileković M., Stojić M., “Permutation invariant algebras, a Fock space realization and the Calogero model”, Eur. Phys. J. C Part. Fields, 24 (2002), 331–343 ; arXiv:math-ph/0201061 | DOI | MR | Zbl
[28] Polychronakos A. P., “Exchange operator formalism for integrable system of particles”, Phys. Rev. Lett., 69 (1992), 703–705 ; arXiv:hep-th/9202057 | DOI | MR | Zbl
[29] Jonke L., Meljanac S., “Bosonic realization of algebras in the Calogero model”, Phys. Lett. B, 256 (2002), 149–156 ; arXiv:hep-th/0106135 | MR
[30] Jonke L., Meljanac S., “Dynamical symmetry algebra of the Calogero model”, Phys. Lett. B, 511 (2001), 276–284 ; arXiv:hep-th/0105043 | DOI | MR | Zbl
[31] Meljanac S., Mileković M., “A unified view of multimode algebras with Fock-like representations”, Internat. J. Modern Phys. A, 11 (1996), 1391–1412 | DOI | MR | Zbl
[32] Gorsky A., Nekrasov N., “Hamiltonian systems of Calogero type and two dimensional Yang–Mills theory”, Nucl. Phys. B, 414 (1994), 213–238 ; arXiv:hep-th/9304047 | DOI | MR | Zbl
[33] Calogero F., Marchioro C., “Exact bound states of some $N$-body systems with two- and three-body forces”, J. Math. Phys., 14 (1973), 182–184 | DOI | Zbl
[34] Forrester P. J., “Some multidimensional integrals related to many-body systems with the $1/r^2$ potential”, J. Phys. A: Math. Gen., 25 (1992), L607–L614 | DOI | MR | Zbl
[35] Dasniers de Veigy A., “On the solution of the Calogero model distinguishable particles in the domain of intermediate statistics”, Nucl. Phys. B, 483 (1997), 580–600 | DOI | MR
[36] Meljanac S., Samsarov A., “Universal properties of conformal quantum many-body systems”, Phys. Lett. B, 613 (2005), 221–225 ; arXiv:hep-th/0503174 | DOI | MR