Calogero Model(s) and Deformed Oscillators
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We briefly review some recent results concerning algebraical (oscillator) aspects of the $N$-body single-species and multispecies Calogero models in one dimension. We show how these models emerge from the matrix generalization of the harmonic oscillator Hamiltonian. We make some comments on the solvability of these models.
Keywords: Calogero model; deformed oscillator algebra; $S_N$-extended Heisenberg algebra.
@article{SIGMA_2006_2_a34,
     author = {Marijan Milekovi\'c and Stjepan Meljanac and Andjelo Samsarov},
     title = {Calogero {Model(s)} and {Deformed} {Oscillators}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a34/}
}
TY  - JOUR
AU  - Marijan Mileković
AU  - Stjepan Meljanac
AU  - Andjelo Samsarov
TI  - Calogero Model(s) and Deformed Oscillators
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a34/
LA  - en
ID  - SIGMA_2006_2_a34
ER  - 
%0 Journal Article
%A Marijan Mileković
%A Stjepan Meljanac
%A Andjelo Samsarov
%T Calogero Model(s) and Deformed Oscillators
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a34/
%G en
%F SIGMA_2006_2_a34
Marijan Mileković; Stjepan Meljanac; Andjelo Samsarov. Calogero Model(s) and Deformed Oscillators. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a34/

[1] Mattis D. C., The many-body problem: 70 years of exactly solved quantum many-body problems, World Scientific, Singapore, 1993 | MR | Zbl

[2] Sutherland B., Beautiful models, World Scientific, Singapore, 2004 | MR | Zbl

[3] Calogero F., “Ground state of one-dimensional $N$-body system”, J. Math. Phys., 10 (1969), 2197–2200 | DOI | MR

[4] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversly quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR

[5] Van Dijen J. F., Vinet L. (eds.), Calogero–Moser–Sutherland models, CRM Series in Mathematical Physics, 25, Springer, Berlin, 2000 | MR

[6] Kawakami N., Critical properties of quantum many-body systems with $1/r^2$ interaction, arXiv:cond-mat/9402011

[7] Gibbons G. W., Townsend P. K., “Black holes and Calogero models”, Phys. Lett. B, 454 (1999), 187–192 ; arXiv:hep-th/9812034 | DOI | MR | Zbl

[8] Sutherland B., “Quantum many-body problem in one dimension: ground state”, J. Math. Phys., 12 (1971), 246–250 | DOI

[9] Gomis J., Kapustin A., “Two-dimensional unoriented strings and matrix models”, JHEP, 06 (2004), 002, 38 pp., ages ; arXiv:hep-th/0310195 | DOI | MR

[10] Gurappa N., Panigrahi P. P., “Equivalence of the Calogero–Sutherland model to free harmonic oscillators”, Phys. Rev. B, 59 (1999), R2490–R2493 ; arXiv:cond-mat/9710035 | DOI

[11] Ezung M., Gurappa N., Khare A., Panigrahi P. K., “Quantum many-body systems with nearest and next-to-nearest neighbor long-range interaction”, Phys. Rev. B, 71 (2005), 125121, 8 pp., ages ; arXiv:cond-mat/0007005 | DOI

[12] Sutherland B., “Exact results for a quantum many-body problem in one dimension II”, Phys. Rev. A, 5 (1972), 1372–1376 | DOI

[13] Hallnas M., Langmann E., Explicit formulas for the eigenfunctios of the $N$-body Calogero model, arXiv:math-ph/0511040 | MR

[14] Brink L., Hansson T. H., Vasiliev M. A., “Explicit solution to the $N$-body Calogero problem”, Phys. Lett. B, 286 (1992), 109–111 ; arXiv:hep-th/9206049 | DOI | MR

[15] Meljanac S., Mileković M., Samsarov A., “A multispecies Calogero model hep-th/0307126.”, Phys. Lett. B, 573 (2003), 202–208 ; arXiv:hep-th/0307126 | DOI | MR | Zbl

[16] Meljanac S., Mileković M., Samsarov A., Stojić M., “Interacting families of Calogero-type particles and SU(1,1) algebra”, Modern Phys. Lett. B, 18 (2004), 603–612 | DOI | Zbl

[17] Meljanac S., Mileković M., Samsarov A., “Generalized Calogero model in arbitrary dimensions”, Phys. Lett. B, 594 (2004), 241–246 ; arXiv:hep-th/0405131 | DOI | MR

[18] Haldane F. D. M., ““Fractional statistics” in arbitrary dimensions: a generalization of the Pauli principle”, Phys. Rev. Lett., 67 (1991), 937–940 | DOI | MR | Zbl

[19] Bernard D., Wu Y.-S., “A note on statistical interactions and the thermodynamical Bethe ansatz”, New Developments of Integrable Systems and Long-Ranged interaction Models, Nankai Lectures on Mathematical Physics, eds. M.-L. Ge and Y.-S. Wu, 1995, 10–21 ; arXiv:cond-mat/9404025 | Zbl

[20] Murthy M. V. N., Shankar R., “Thermodynamics of a one-dimensional ideal gas with fractional exclusion statistics”, Phys. Rev. Lett., 73 (1994), 3331–3334 ; arXiv:cond-mat/9404096 | DOI | MR | Zbl

[21] Furtlehner C., Ouvry S., “Calogero model for distinguishable particles”, Modern Phys. Lett. A, 9 (1995), 503–509 ; arXiv:hep-th/9407107 | DOI | MR

[22] Sen D., “A multispecies Calogero–Sutherland model”, Nucl. Phys. B, 479 (1996), 554–574 | DOI | MR | Zbl

[23] Mashkevic S., “Towards a quantum-mechanical model for multispecies exclusion statistics”, Phys. Lett. A, 233 (1997), 30–36 | DOI | MR | Zbl

[24] Guhr T., Kohler H., “Supersymmetry and models for two kinds of interacting particles”, Phys. Rev. E, 71 (2005), 045102, 4 pp., ages ; arXiv:math-ph/0408033 | DOI

[25] Meljanac S., Samsarov A., “Matrix oscillator and Calogero-type models”, Phys. Lett. B, 600 (2004), 179–184 ; arXiv:hep-th/0408241 | DOI | MR

[26] Bardek V., Jonke L., Meljanac S., Mileković M., “Calogero model, deformed oscillators and the collapse”, Phys. Lett. B, 531 (2002), 311–315 ; arXiv:hep-th/0107053 | DOI | MR | Zbl

[27] Meljanac S., Mileković M., Stojić M., “Permutation invariant algebras, a Fock space realization and the Calogero model”, Eur. Phys. J. C Part. Fields, 24 (2002), 331–343 ; arXiv:math-ph/0201061 | DOI | MR | Zbl

[28] Polychronakos A. P., “Exchange operator formalism for integrable system of particles”, Phys. Rev. Lett., 69 (1992), 703–705 ; arXiv:hep-th/9202057 | DOI | MR | Zbl

[29] Jonke L., Meljanac S., “Bosonic realization of algebras in the Calogero model”, Phys. Lett. B, 256 (2002), 149–156 ; arXiv:hep-th/0106135 | MR

[30] Jonke L., Meljanac S., “Dynamical symmetry algebra of the Calogero model”, Phys. Lett. B, 511 (2001), 276–284 ; arXiv:hep-th/0105043 | DOI | MR | Zbl

[31] Meljanac S., Mileković M., “A unified view of multimode algebras with Fock-like representations”, Internat. J. Modern Phys. A, 11 (1996), 1391–1412 | DOI | MR | Zbl

[32] Gorsky A., Nekrasov N., “Hamiltonian systems of Calogero type and two dimensional Yang–Mills theory”, Nucl. Phys. B, 414 (1994), 213–238 ; arXiv:hep-th/9304047 | DOI | MR | Zbl

[33] Calogero F., Marchioro C., “Exact bound states of some $N$-body systems with two- and three-body forces”, J. Math. Phys., 14 (1973), 182–184 | DOI | Zbl

[34] Forrester P. J., “Some multidimensional integrals related to many-body systems with the $1/r^2$ potential”, J. Phys. A: Math. Gen., 25 (1992), L607–L614 | DOI | MR | Zbl

[35] Dasniers de Veigy A., “On the solution of the Calogero model distinguishable particles in the domain of intermediate statistics”, Nucl. Phys. B, 483 (1997), 580–600 | DOI | MR

[36] Meljanac S., Samsarov A., “Universal properties of conformal quantum many-body systems”, Phys. Lett. B, 613 (2005), 221–225 ; arXiv:hep-th/0503174 | DOI | MR