On Orthogonality Relations for Dual Discrete $q$-Ultraspherical Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dual discrete $q$-ultraspherical polynomials $D_n^{(s)}(\mu(x;s)|q)$ correspond to indeterminate moment problem and, therefore, have one-parameter family of extremal orthogonality relations. It is shown that special cases of dual discrete $q$-ultraspherical polynomials $D_n^{(s)}(\mu(x;s)|q)$, when $s=q^{-1}$ and $s=q$, are directly connected with $q^{-1}$-Hermite polynomials. These connections are given in an explicit form. Using these relations, all extremal orthogonality relations for these special cases of polynomials $D_n^{(s)}(\mu(x;s)|q)$ are found.
Keywords: $q$-orthogonal polynomials; dual discrete $q$-ultraspherical polynomials; $q^{-1}$-Hermite polynomials; orthogonality relation.
@article{SIGMA_2006_2_a33,
     author = {Valentyna A. Groza and Ivan I. Kachuryk},
     title = {On {Orthogonality} {Relations} for {Dual} {Discrete} $q${-Ultraspherical} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a33/}
}
TY  - JOUR
AU  - Valentyna A. Groza
AU  - Ivan I. Kachuryk
TI  - On Orthogonality Relations for Dual Discrete $q$-Ultraspherical Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a33/
LA  - en
ID  - SIGMA_2006_2_a33
ER  - 
%0 Journal Article
%A Valentyna A. Groza
%A Ivan I. Kachuryk
%T On Orthogonality Relations for Dual Discrete $q$-Ultraspherical Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a33/
%G en
%F SIGMA_2006_2_a33
Valentyna A. Groza; Ivan I. Kachuryk. On Orthogonality Relations for Dual Discrete $q$-Ultraspherical Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a33/

[1] Askey R., Wilson J., “Some basic hypergeometric polynomials that generalize Jacobi polynomials”, Memoirs Amer. Math. Soc., 319 (1985), 1–115

[2] Askey R., Wilson J., “A set of orthogonal polynomials that generalize the Racah coefficients or $6-j$ symbols”, SIAM J. Math. Anal., 10 (1979), 1008–1016 | DOI | MR | Zbl

[3] Klimyk A., “Spectra of observables in the $q$-oscillator and $q$-analogue of the Fourier transform”, SIGMA, 1 (2005), Paper 008, 17 pp., ages ; arXiv:math-ph/0508032 | MR | Zbl

[4] Askey R., “Continuous $q$-Hermite polynomials when $q>1$”, $q$-Series and Partitions, ed. D. Stanton, Springer, Berlin, 1998, 151–158 | MR

[5] Atakishiyev N. M., Klimyk A. U., “On discrete $q$-ultraspherical polynomials and their duals”, J. Math. Anal. Appl., 306 (2005), 637–645 ; arXiv:math.CA/0403159 | DOI | MR | Zbl

[6] Ismail M. E. R., Masson D. R., “$q$-Hermite polynomials, biorthogonal functions, and $q$-beta integrals”, Trans. Amer. Math. Soc., 346 (1994), 63–116 | DOI | MR | Zbl

[7] Groza V., “Representations of the quantum algebra $su_q(1,1)$ and discrete $q$-ultraspherical polynomials”, SIGMA, 1 (2005), Paper 016, 7 pp., ages ; arXiv:math.QA/0511632 | MR | Zbl

[8] Gasper G., Rahman M., Basic hypergeometric functions, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[9] Atakishiyev N. M., Klimyk A. U., “Duality of $q$-polynomials, orthogonal on countable sets of points”, Elect. Trans. Numer. Anal., 24 (2006), 108–180 ; arXiv:math.CA/0411249 | MR | Zbl

[10] Atakishiyev N. M., Klimyk A. U., “On $q$-orthogonal polynomials, dual to little and big $q$-Jacobi polynomials”, J. Math. Anal. Appl., 294 (2004), 246–257 ; arXiv:math.CA/0307250 | DOI | MR | Zbl

[11] Shohat J., Tamarkin J. D., The problem of moments, American Mathematical Society, Providence, R.I., 1943 | MR | Zbl