@article{SIGMA_2006_2_a32,
author = {Agata Bezubik and Aleksander Strasburger},
title = {A~New {Form} of the {Spherical} {Expansion} of {Zonal} {Functions} and {Fourier} {Transforms} of $\mathrm{SO}(d)${-Finite} {Functions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a32/}
}
TY - JOUR
AU - Agata Bezubik
AU - Aleksander Strasburger
TI - A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of $\mathrm{SO}(d)$-Finite Functions
JO - Symmetry, integrability and geometry: methods and applications
PY - 2006
VL - 2
UR - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a32/
LA - en
ID - SIGMA_2006_2_a32
ER -
%0 Journal Article
%A Agata Bezubik
%A Aleksander Strasburger
%T A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of $\mathrm{SO}(d)$-Finite Functions
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a32/
%G en
%F SIGMA_2006_2_a32
Agata Bezubik; Aleksander Strasburger. A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of $\mathrm{SO}(d)$-Finite Functions. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a32/
[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[2] Bezubik A., Da̧browska A., Strasburger A., “On the Fourier transform of $\mathbf{SO}(d)$-finite measures on the unit sphere”, Arch. Math. (Basel), 84 (2005), 470–480 | MR | Zbl
[3] Bezubik A., Da̧browska A., Strasburger A., “On spherical expansions of zonal functions on Euclidean spheres”, Arch. Math., 90:1 (2008), 70–81 | DOI | MR | Zbl
[4] zu Castell W., Filbir F., “Radial Basis functions and corresponding zonal series expansions on the sphere”, J. Approx. Theory, 134 (2005), 65–79 | DOI | MR | Zbl
[5] Faraut J., “Analyse harmonique et fonctions speciales”, Deux Cours d'Analyse Harmonique. Ecole d'Ètè d'Analyse Harmonique de Tunis, 1984, Progress in Mathematics, 69, eds. J. Faraut and K. Harzallah, Birkhäuser Verlag, Basel, 1987, 1–151 | MR
[6] Gonzalez Vieli F. J., “Inversion de Fourier ponctuelle des distributions à support compact”, Arch. Math. (Basel), 75 (2000), 290–298 | MR | Zbl
[7] Lucquiaud J. C., “Generalization sous forme covariante des polynomes de Gegenbauer”, J. Math. Pures Appl. (9), 63 (1984), 265–282 | MR | Zbl
[8] Magnus W., Oberhettinger F., Soni R. P., Formulas and theorems for the special functions of mathematical physics, 3rd ed., Springer-Verlag, Berlin, 1966 | MR
[9] Müller C., Analysis of spherical symmetries in Euclidean spaces, Springer-Verlag, New York, 1998 | MR
[10] Stein E. M., Weiss G., Introduction to harmonic analysis on Euclidean spaces, Princeton University Press, Princeton, 1971 | MR
[11] Strasburger A.,, “A generalization of the Bochner identity”, Exposition. Math., 11 (1993), 153–157 | MR | Zbl
[12] Vilenkin N. J., Special functions and the theory of group representations, Nauka, Moscow, 1965 (in Russian) | MR
[13] Wawrzyńczyk A., Group representations and special functions, D. Reidel and PWN, Dordrecht–Warszawa, 1984 | MR | Zbl