Localized Induction Equation for Stretched Vortex Filament
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study numerically the motion of the stretched vortex filaments by using the localized induction equation with the stretch and that without the stretch.
Keywords: localized induction equation; stretch; vortex filament.
@article{SIGMA_2006_2_a31,
     author = {Kimiaki Konno and Hiroshi Kakuhata},
     title = {Localized {Induction} {Equation} for {Stretched} {Vortex} {Filament}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a31/}
}
TY  - JOUR
AU  - Kimiaki Konno
AU  - Hiroshi Kakuhata
TI  - Localized Induction Equation for Stretched Vortex Filament
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a31/
LA  - en
ID  - SIGMA_2006_2_a31
ER  - 
%0 Journal Article
%A Kimiaki Konno
%A Hiroshi Kakuhata
%T Localized Induction Equation for Stretched Vortex Filament
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a31/
%G en
%F SIGMA_2006_2_a31
Kimiaki Konno; Hiroshi Kakuhata. Localized Induction Equation for Stretched Vortex Filament. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a31/

[1] Konno K., Kakuhata H., “A new type of stretched solutions excited by initially stretched vortex filaments for the local induction equation”, Theor. Math. Phys., 144:2 (2005), 1181–1189 | DOI | MR | Zbl

[2] Arms R. J., Hama F. R., “Localized-induction concept on a curved vortex and motion of an elliptic vortex ring”, Phys. Fluids, 8 (1965), 553–559 | DOI

[3] Konno K., Kakuhata H., “Stretching of vortex filament with corrections”, Nonlinear Physics: Theory and Experiment, II (2002, Gallipoli), World Scientific Publishing, River Edge, NJ, 2003, 273–279 | MR | Zbl

[4] Hashimoto H., “A soliton on a vortex filament”, J. Fluid Mech., 51 (1972), 477–485 | DOI

[5] Konno K., Kakuhata H., “A hierarchy for integrable equations of stretched vortex filament”, J. Phys. Soc. Japan, 74 (2005), 1427–1430 | DOI | Zbl

[6] Konno K., Mitsuhashi T., Ichikawa Y. H., “Dynamical processes of the dressed ion acoustic solitons”, J. Phys. Soc. Japan, 43 (1977), 669–674 | DOI