$q$-Deformed Bi-Local Fields II
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a way of $q$-deformation of the bi-local system, the two particle system bounded by a relativistic harmonic oscillator type of potential, from both points of view of mass spectra and the behavior of scattering amplitudes. In our formulation, the deformation is done so that $P^2$, the square of center of mass momentum, enters into the deformation parameters of relative coordinates. As a result, the wave equation of the bi-local system becomes nonlinear with respect to $P^2$; then, the propagator of the bi-local system suffers significant change so as to get a convergent self energy to the second order. The study is also made on the covariant $q$-deformation in four dimensional spacetime.
Keywords: $q$-deformation; bi-local system; harmonic oscillator; nonlinear wave equation.
@article{SIGMA_2006_2_a30,
     author = {Haruki Toyoda and Shigefumi Naka},
     title = {$q${-Deformed} {Bi-Local} {Fields~II}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a30/}
}
TY  - JOUR
AU  - Haruki Toyoda
AU  - Shigefumi Naka
TI  - $q$-Deformed Bi-Local Fields II
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a30/
LA  - en
ID  - SIGMA_2006_2_a30
ER  - 
%0 Journal Article
%A Haruki Toyoda
%A Shigefumi Naka
%T $q$-Deformed Bi-Local Fields II
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a30/
%G en
%F SIGMA_2006_2_a30
Haruki Toyoda; Shigefumi Naka. $q$-Deformed Bi-Local Fields II. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a30/

[1] Yukawa H., “Quantum theory of non-local fields. Part I. Free fields”, Phys. Rev., 77 (1950), 219–226 ; Katayama Y., Yukawa H., “Theory of elementary particles extended in space and time”, Progr. Theoret. Phys. Suppl., 41 (1968), 1–21 ; Naka S., “On the study in Japan of theory of elementary particle extended in space-time”, Proceedings of the International Symposium on Extended Objects and Bound Systems: From Relativistic Description to Phenomenological Application (March 19–21, 1992, Karuizawa, Japan), eds. O. Hara, S. Ishida and S. Naka, World Scientific, 1993, 389–426 | DOI | MR | Zbl | DOI | MR

[2] Yukawa H., “Structure and mass spectrum of elementary particles. I. General considerations”, Phys. Rev., 91 (1953), 415–416 ; Gotō T., Naka S., Kamimura K., “On the bi-local model and string model. Theory of elementary particles extended in space-time”, Progr. Theoret. Phys. Suppl., 67 (1979), 69–114, and reference therein | DOI | MR | DOI | MR

[3] Barger V. D., Cline D. B., Phenomenological theories of high energy scattering, W. A. Benjamin, Inc., 1969, 41

[4] Van Hove L., “Regge pole and single particle exchange mechanisms in high energy collisions”, Phys. Lett. B, 24 (1967), 183–184 ; Bando M., Inoue T., Takada Y., Tanaka S., “The Regge pole hypothesis and an extended particle model”, Progr. Theoret. Phys., 38 (1967), 715–732 ; Ishida S., Otokozawa J., “Scattering amplitude in the Ur-citon scheme”, Progr. Theoret. Phys., 47 (1974), 2117–2132 | DOI | DOI | DOI

[5] Takabayasi T., “Oscillator model for particles underlying unitary symmetry”, Nuovo Cimento, 33 (1964), 668–672 | DOI

[6] Macfarlane A. J., “On $q$-analogues of the quantum harmonic oscillator and the quantum group $\mathrm{SU}(2)_q$”, J. Phys. A: Math. Gen., 22 (1989), 4581–4588 | DOI | MR | Zbl

[7] Fichtmüller M., Lorek A., Wess J., “$q$-deformed phase space and its lattice structure”, Z. Phys. C, 71 (1996), 533–538 ; Cerchiai B. L., Hinterding R., Madore J., Wess J., “The geometry of a $q$-deformed phase space”, Eur. Phys. J. C Part. Fields, 8 (1999), 533–546 | MR | MR

[8] Sogami I. S., Koizumi K., Mir-Kasimov R. M., “$q$-deformed and $c$-deformed harmonic oscillators”, Progr. Theoret. Phys., 110 (2003), 819–840 | DOI | MR | Zbl

[9] Chaichian M., Demichev A., Introduction to quantum groups, World Scientific, 1996 | MR

[10] Naka S., Toyoda H., “5 dimensional spacetime with $q$-deformed extra space”, Progr. Theoret. Phys., 109 (2003), 103–114 ; arXiv:hep-th/0209199 | DOI | MR | Zbl

[11] Naka S., Toyoda H., Kimishima A., “$q$-deformed bi-local fields”, Progr. Theoret. Phys., 113 (2005), 645–656 ; arXiv:hep-th/0412062 | DOI | MR

[12] Gotō T., “On the interaction of extended particles. Formulation of dreaking and connection of strings”, Progr. Theoret. Phys., 47 (1972), 2090–2106 | DOI

[13] Gotō T., Naka S., “On the vertex function in the bi-local field”, Progr. Theoret. Phys., 51 (1974), 299–308 | DOI