@article{SIGMA_2006_2_a30,
author = {Haruki Toyoda and Shigefumi Naka},
title = {$q${-Deformed} {Bi-Local} {Fields~II}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a30/}
}
Haruki Toyoda; Shigefumi Naka. $q$-Deformed Bi-Local Fields II. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a30/
[1] Yukawa H., “Quantum theory of non-local fields. Part I. Free fields”, Phys. Rev., 77 (1950), 219–226 ; Katayama Y., Yukawa H., “Theory of elementary particles extended in space and time”, Progr. Theoret. Phys. Suppl., 41 (1968), 1–21 ; Naka S., “On the study in Japan of theory of elementary particle extended in space-time”, Proceedings of the International Symposium on Extended Objects and Bound Systems: From Relativistic Description to Phenomenological Application (March 19–21, 1992, Karuizawa, Japan), eds. O. Hara, S. Ishida and S. Naka, World Scientific, 1993, 389–426 | DOI | MR | Zbl | DOI | MR
[2] Yukawa H., “Structure and mass spectrum of elementary particles. I. General considerations”, Phys. Rev., 91 (1953), 415–416 ; Gotō T., Naka S., Kamimura K., “On the bi-local model and string model. Theory of elementary particles extended in space-time”, Progr. Theoret. Phys. Suppl., 67 (1979), 69–114, and reference therein | DOI | MR | DOI | MR
[3] Barger V. D., Cline D. B., Phenomenological theories of high energy scattering, W. A. Benjamin, Inc., 1969, 41
[4] Van Hove L., “Regge pole and single particle exchange mechanisms in high energy collisions”, Phys. Lett. B, 24 (1967), 183–184 ; Bando M., Inoue T., Takada Y., Tanaka S., “The Regge pole hypothesis and an extended particle model”, Progr. Theoret. Phys., 38 (1967), 715–732 ; Ishida S., Otokozawa J., “Scattering amplitude in the Ur-citon scheme”, Progr. Theoret. Phys., 47 (1974), 2117–2132 | DOI | DOI | DOI
[5] Takabayasi T., “Oscillator model for particles underlying unitary symmetry”, Nuovo Cimento, 33 (1964), 668–672 | DOI
[6] Macfarlane A. J., “On $q$-analogues of the quantum harmonic oscillator and the quantum group $\mathrm{SU}(2)_q$”, J. Phys. A: Math. Gen., 22 (1989), 4581–4588 | DOI | MR | Zbl
[7] Fichtmüller M., Lorek A., Wess J., “$q$-deformed phase space and its lattice structure”, Z. Phys. C, 71 (1996), 533–538 ; Cerchiai B. L., Hinterding R., Madore J., Wess J., “The geometry of a $q$-deformed phase space”, Eur. Phys. J. C Part. Fields, 8 (1999), 533–546 | MR | MR
[8] Sogami I. S., Koizumi K., Mir-Kasimov R. M., “$q$-deformed and $c$-deformed harmonic oscillators”, Progr. Theoret. Phys., 110 (2003), 819–840 | DOI | MR | Zbl
[9] Chaichian M., Demichev A., Introduction to quantum groups, World Scientific, 1996 | MR
[10] Naka S., Toyoda H., “5 dimensional spacetime with $q$-deformed extra space”, Progr. Theoret. Phys., 109 (2003), 103–114 ; arXiv:hep-th/0209199 | DOI | MR | Zbl
[11] Naka S., Toyoda H., Kimishima A., “$q$-deformed bi-local fields”, Progr. Theoret. Phys., 113 (2005), 645–656 ; arXiv:hep-th/0412062 | DOI | MR
[12] Gotō T., “On the interaction of extended particles. Formulation of dreaking and connection of strings”, Progr. Theoret. Phys., 47 (1972), 2090–2106 | DOI
[13] Gotō T., Naka S., “On the vertex function in the bi-local field”, Progr. Theoret. Phys., 51 (1974), 299–308 | DOI