On Linearizing Systems of Diffusion Equations
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider systems of diffusion equations that have considerable interest in Soil Science and Mathematical Biology and focus upon the problem of finding those forms of this class that can be linearized. In particular we use the equivalence transformations of the second generation potential system to derive forms of this system that can be linearized. In turn, these transformations lead to nonlocal mappings that linearize the original system.
Keywords: diffusion equations; equivalence transformations; linearization.
@article{SIGMA_2006_2_a3,
     author = {Christodoulos Sophocleous and Ron J. Wiltshire},
     title = {On {Linearizing} {Systems} of {Diffusion} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a3/}
}
TY  - JOUR
AU  - Christodoulos Sophocleous
AU  - Ron J. Wiltshire
TI  - On Linearizing Systems of Diffusion Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a3/
LA  - en
ID  - SIGMA_2006_2_a3
ER  - 
%0 Journal Article
%A Christodoulos Sophocleous
%A Ron J. Wiltshire
%T On Linearizing Systems of Diffusion Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a3/
%G en
%F SIGMA_2006_2_a3
Christodoulos Sophocleous; Ron J. Wiltshire. On Linearizing Systems of Diffusion Equations. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a3/

[1] Akhatov I. Sh., Gazizov R. K., Ibragimov N. Kh., “Nonlocal symmetries. Heuristic approach”, J. Soviet. Math., 55 (1991), 1401–1450 | DOI | MR

[2] Baikov V. A., Gladkov A. V., Wiltshire R. J., “Lie symmetry classification analysis for nonlinear coupled diffusion”, J. Phys. A: Math. Gen., 31 (1998), 7483–7499 | DOI | MR | Zbl

[3] Bluman G. W., Kumei S., Symmetries and differential equations, Springer, New York, 1989 | MR | Zbl

[4] Bluman G. W., Kumei S., “On the remarkable nonlinear diffusion equation $(\partial/\partial x)[a(u+b)^{-2}(\partial u/\partial x)]- (\partial u/\partial t)=0$”, J. Math. Phys., 21 (1980), 1019–1023 | DOI | MR | Zbl

[5] Ibragimov N. H., Torrisi M., Valenti A., “Preliminary group classification of equations $v_{tt}=f(x,v_x)v_{xx}+g(x,v_x)$”, J. Math. Phys., 32 (1991), 2988–2995 | DOI | MR | Zbl

[6] Jury W. A., Letey J., Stolzy L. H., “Flow of water and energy under desert conditions”, Water in Desert Ecosystems, eds. D. Evans and J. L. Thames, Dowden, Hutchinson and Ross, Stroudsburg, PA, 1981, 92–113

[7] Ovsiannikov L. V., Group analysis of differential equations, Academic, New York, 1982 | MR | Zbl

[8] Philip J. R., de Vries D. A., “Moisture movement in porous media under temperature gradients”, Trans. Am. Geophys. Un., 38 (1957), 222–232

[9] Sophocleous C., Wiltshire R. J., Systems of diffusion equations, Proceedings of 11th Conference “Symmetry in Physics”, Prague, 2004, 17 pp., ages

[10] Wiltshire R. J., “The use of Lie transformation groups in the solution of the coupled diffusion equation”, J. Phys. A: Math. Gen., 27 (1994), 7821–7829 | DOI | MR | Zbl