@article{SIGMA_2006_2_a3,
author = {Christodoulos Sophocleous and Ron J. Wiltshire},
title = {On {Linearizing} {Systems} of {Diffusion} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a3/}
}
Christodoulos Sophocleous; Ron J. Wiltshire. On Linearizing Systems of Diffusion Equations. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a3/
[1] Akhatov I. Sh., Gazizov R. K., Ibragimov N. Kh., “Nonlocal symmetries. Heuristic approach”, J. Soviet. Math., 55 (1991), 1401–1450 | DOI | MR
[2] Baikov V. A., Gladkov A. V., Wiltshire R. J., “Lie symmetry classification analysis for nonlinear coupled diffusion”, J. Phys. A: Math. Gen., 31 (1998), 7483–7499 | DOI | MR | Zbl
[3] Bluman G. W., Kumei S., Symmetries and differential equations, Springer, New York, 1989 | MR | Zbl
[4] Bluman G. W., Kumei S., “On the remarkable nonlinear diffusion equation $(\partial/\partial x)[a(u+b)^{-2}(\partial u/\partial x)]- (\partial u/\partial t)=0$”, J. Math. Phys., 21 (1980), 1019–1023 | DOI | MR | Zbl
[5] Ibragimov N. H., Torrisi M., Valenti A., “Preliminary group classification of equations $v_{tt}=f(x,v_x)v_{xx}+g(x,v_x)$”, J. Math. Phys., 32 (1991), 2988–2995 | DOI | MR | Zbl
[6] Jury W. A., Letey J., Stolzy L. H., “Flow of water and energy under desert conditions”, Water in Desert Ecosystems, eds. D. Evans and J. L. Thames, Dowden, Hutchinson and Ross, Stroudsburg, PA, 1981, 92–113
[7] Ovsiannikov L. V., Group analysis of differential equations, Academic, New York, 1982 | MR | Zbl
[8] Philip J. R., de Vries D. A., “Moisture movement in porous media under temperature gradients”, Trans. Am. Geophys. Un., 38 (1957), 222–232
[9] Sophocleous C., Wiltshire R. J., Systems of diffusion equations, Proceedings of 11th Conference “Symmetry in Physics”, Prague, 2004, 17 pp., ages
[10] Wiltshire R. J., “The use of Lie transformation groups in the solution of the coupled diffusion equation”, J. Phys. A: Math. Gen., 27 (1994), 7821–7829 | DOI | MR | Zbl