Supersymmetric Representations and Integrable Fermionic Extensions of the Burgers and Boussinesq Equations
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct new integrable coupled systems of $N=1$ supersymmetric equations and present integrable fermionic extensions of the Burgers and Boussinesq equations. Existence of infinitely many higher symmetries is demonstrated by the presence of recursion operators. Various algebraic methods are applied to the analysis of symmetries, conservation laws, recursion operators, and Hamiltonian structures. A fermionic extension of the Burgers equation is related with the Burgers flows on associative algebras. A Gardner's deformation is found for the bosonic super-field dispersionless Boussinesq equation, and unusual properties of a recursion operator for its Hamiltonian symmetries are described. Also, we construct a three-parametric supersymmetric system that incorporates the Boussinesq equation with dispersion and dissipation but never retracts to it for any values of the parameters.
Keywords: integrable super-equations; fermionic extensions;Burgers equation; Boussinesq equation.
@article{SIGMA_2006_2_a29,
     author = {Arthemy V. Kiselev and Thomas Wolf},
     title = {Supersymmetric {Representations} and {Integrable} {Fermionic} {Extensions} of the {Burgers} and {Boussinesq} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a29/}
}
TY  - JOUR
AU  - Arthemy V. Kiselev
AU  - Thomas Wolf
TI  - Supersymmetric Representations and Integrable Fermionic Extensions of the Burgers and Boussinesq Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a29/
LA  - en
ID  - SIGMA_2006_2_a29
ER  - 
%0 Journal Article
%A Arthemy V. Kiselev
%A Thomas Wolf
%T Supersymmetric Representations and Integrable Fermionic Extensions of the Burgers and Boussinesq Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a29/
%G en
%F SIGMA_2006_2_a29
Arthemy V. Kiselev; Thomas Wolf. Supersymmetric Representations and Integrable Fermionic Extensions of the Burgers and Boussinesq Equations. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a29/

[1] Andrea S., Restuccia A., Sotomayor A., “The Gardner category and nonlocal conservation laws for $N=1$ Super KdV”, J. Math. Phys., 46 (2005), 103513, 11 pp., ages ; arXiv:hep-th/0504149 | DOI | MR

[2] Bilge A. H., “On the equivalence of linearization and formal symmetries as integrability tests for evolution equations”, J. Phys. A: Math. Gen., 26 (1993), 7511–7519 | DOI | MR | Zbl

[3] Hlavatý L., “The Painlevé analysis of fermionic extensions of KdV and Burgers equations”, Phys. Lett. A, 137:4–5 (1989), 173–178 | DOI | MR

[4] Kersten P., Krasil'shchik I., Verbovetsky A., “Hamiltonian operators and $\ell^*$-coverings”, J. Geom. Phys., 50:1–4 (2004), 273–302 ; arXiv:math.DG/0304245 | DOI | MR | Zbl

[5] Kersten P., Krasil'shchik I., Verbovetsky A., “(Non)local Hamiltonian and symplectic structures, recursions and hierarchies: a new approach and applications to the $N=1$ supersymmetric KdV equation”, J. Phys. A: Math. Gen., 37 (2004), 5003–5019 ; arXiv:nlin.SI/0305026 | DOI | MR | Zbl

[6] Kiselev A. V., Karasu A., Hamiltonian deformations of the Boussinesq equations, Proc. Workshop “Quantization, Dualities, and Integrable Systems” (January 23–27, 2006, Denizli, Turkey). Preprint ISPUmath-1/2006, 12 pp., ages | MR

[7] Kiselev A. V., Wolf T., On weakly non-local, nilpotent, and super-recursion operators for $N=1$ homogeneous super-equations, Proc. Int. Workshop “Supersymmetries and Quantum Symmetries – 2005” (July 26–31, 2005, Dubna, Russia)

[8] Kiselev A. V., Wolf T., “Classification of integrable super-systems using the SsTools environment”, Comp. Phys. Commun., 177:3 (2007), 315–328 | DOI | MR

[9] Krasil'shchik I. S., Kersten P. H. M., Symmetries and recursion operators for classical and supersymmetric differential equations, Kluwer Acad. Publ., Dordrecht, 2000 | MR

[10] Krasil'shchik I. S., Lychagin V. V., Vinogradov A. M., Geometry of jet spaces and nonlinear partial differential equations, Gordon Breach Sci. Publ., New York, 1986 | MR

[11] Kupershmidt B. A., “Singular symmetries of integrable curves and surfaces”, J. Math. Phys., 23 (1982), 364–366 | DOI | MR | Zbl

[12] Kupershmidt B. A., “Deformations of integrable systems”, Proc. Roy. Irish Acad. A, 83 (1983), 45–74 | MR | Zbl

[13] Laberge C. A., Mathieu P., “$N=2$ superconformal algebra and integrable $O(2)$ fermionic extensions of the Korteweg–de Vries equation”, Phys. Lett. B, 215 (1988), 718–722 | DOI | MR

[14] Maltsev A. Ya., Novikov S. P., “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Phys. D, 156 (2001), 53–80 ; arXiv:nlin.SI/0006030 | DOI | MR | Zbl

[15] Manin Yu. I., Radul A. O., “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Comm. Math. Phys., 98 (1985), 65–77 | DOI | MR | Zbl

[16] Mathieu P., “Supersymmetric extension of the Korteweg–de Vries equation”, J. Math. Phys., 29 (1988), 2499–2506 | DOI | MR | Zbl

[17] Mathieu P., “Open problems for the super KdV equations”, Bäcklund and Darboux transformations. The geometry of solitons, CRM Proc. Lecture Notes, 29, Amer. Math. Soc., Providence, RI, 2001, 325–334 ; arXiv:math-ph/0005007 | MR | Zbl

[18] Miura R. M., Gardner C. S., Kruskal M. D., “Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion”, J. Math. Phys., 9 (1968), 1204–1209 | DOI | MR | Zbl

[19] Olver P. J., Applications of Lie groups to differential equations, 2nd ed., Springer-Verlag, New York, 1993 | MR

[20] Olver P. J., Sokolov V. V., “Integrable evolution equations on associative algebras”, Comm. Math. Phys., 193 (1998), 245–268 | DOI | MR | Zbl

[21] Roždestvenskiĭ B. L., Janenko N. N., Systems of quasilinear equations and their applicatons to gas dynamics, Translations of Mathematical Monographs, 55, AMS, Providence, RI, 1983 | MR

[22] Sergyeyev A., “Locality of symmetries generated by nonhereditary, inhomogeneous, and time-dependent recursion operators: a new application for formal symmetries”, Acta Appl. Math., 83 (2004), 95–109 ; ; Sergyeyev A., “Why nonlocal recursion operators produce local symmetries: new results and applications”, J. Phys. A: Math. Gen., 38 (2005), 3397–3407 ; arXiv:nlin.SI/0303033arXiv:nlin.SI/0410049 | DOI | MR | Zbl | DOI | MR | Zbl

[23] Svinolupov S. I., “On the analogues of the Burgers equation”, Phys. Lett. A, 135 (1989), 32–36 | DOI | MR

[24] Tsuchida T., Wolf T., “Classification of polynomial integrable systems of mixed scalar and vector evolution equations. I”, J. Phys. A: Math. Gen., 38 (2005), 7691–7733 ; arXiv:nlin.SI/0412003 | DOI | MR | Zbl

[25] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial differential equations”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl

[26] Wolf T., “Applications of Crack in the classification of integrable systems”, Superintegrability in classical and quantum systems, , CRM Proc. Lecture Notes, 37, Amer. Math. Soc., Providence, RI, 2004, 283–300 arXiv:nlin.SI/0301032 | MR | Zbl

[27] Wolf T., Supersymmetric evolutionary equations with higher order symmetries, , 2003 (please contact T. W. for access)