@article{SIGMA_2006_2_a29,
author = {Arthemy V. Kiselev and Thomas Wolf},
title = {Supersymmetric {Representations} and {Integrable} {Fermionic} {Extensions} of the {Burgers} and {Boussinesq} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a29/}
}
TY - JOUR AU - Arthemy V. Kiselev AU - Thomas Wolf TI - Supersymmetric Representations and Integrable Fermionic Extensions of the Burgers and Boussinesq Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2006 VL - 2 UR - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a29/ LA - en ID - SIGMA_2006_2_a29 ER -
%0 Journal Article %A Arthemy V. Kiselev %A Thomas Wolf %T Supersymmetric Representations and Integrable Fermionic Extensions of the Burgers and Boussinesq Equations %J Symmetry, integrability and geometry: methods and applications %D 2006 %V 2 %U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a29/ %G en %F SIGMA_2006_2_a29
Arthemy V. Kiselev; Thomas Wolf. Supersymmetric Representations and Integrable Fermionic Extensions of the Burgers and Boussinesq Equations. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a29/
[1] Andrea S., Restuccia A., Sotomayor A., “The Gardner category and nonlocal conservation laws for $N=1$ Super KdV”, J. Math. Phys., 46 (2005), 103513, 11 pp., ages ; arXiv:hep-th/0504149 | DOI | MR
[2] Bilge A. H., “On the equivalence of linearization and formal symmetries as integrability tests for evolution equations”, J. Phys. A: Math. Gen., 26 (1993), 7511–7519 | DOI | MR | Zbl
[3] Hlavatý L., “The Painlevé analysis of fermionic extensions of KdV and Burgers equations”, Phys. Lett. A, 137:4–5 (1989), 173–178 | DOI | MR
[4] Kersten P., Krasil'shchik I., Verbovetsky A., “Hamiltonian operators and $\ell^*$-coverings”, J. Geom. Phys., 50:1–4 (2004), 273–302 ; arXiv:math.DG/0304245 | DOI | MR | Zbl
[5] Kersten P., Krasil'shchik I., Verbovetsky A., “(Non)local Hamiltonian and symplectic structures, recursions and hierarchies: a new approach and applications to the $N=1$ supersymmetric KdV equation”, J. Phys. A: Math. Gen., 37 (2004), 5003–5019 ; arXiv:nlin.SI/0305026 | DOI | MR | Zbl
[6] Kiselev A. V., Karasu A., Hamiltonian deformations of the Boussinesq equations, Proc. Workshop “Quantization, Dualities, and Integrable Systems” (January 23–27, 2006, Denizli, Turkey). Preprint ISPUmath-1/2006, 12 pp., ages | MR
[7] Kiselev A. V., Wolf T., On weakly non-local, nilpotent, and super-recursion operators for $N=1$ homogeneous super-equations, Proc. Int. Workshop “Supersymmetries and Quantum Symmetries – 2005” (July 26–31, 2005, Dubna, Russia)
[8] Kiselev A. V., Wolf T., “Classification of integrable super-systems using the SsTools environment”, Comp. Phys. Commun., 177:3 (2007), 315–328 | DOI | MR
[9] Krasil'shchik I. S., Kersten P. H. M., Symmetries and recursion operators for classical and supersymmetric differential equations, Kluwer Acad. Publ., Dordrecht, 2000 | MR
[10] Krasil'shchik I. S., Lychagin V. V., Vinogradov A. M., Geometry of jet spaces and nonlinear partial differential equations, Gordon Breach Sci. Publ., New York, 1986 | MR
[11] Kupershmidt B. A., “Singular symmetries of integrable curves and surfaces”, J. Math. Phys., 23 (1982), 364–366 | DOI | MR | Zbl
[12] Kupershmidt B. A., “Deformations of integrable systems”, Proc. Roy. Irish Acad. A, 83 (1983), 45–74 | MR | Zbl
[13] Laberge C. A., Mathieu P., “$N=2$ superconformal algebra and integrable $O(2)$ fermionic extensions of the Korteweg–de Vries equation”, Phys. Lett. B, 215 (1988), 718–722 | DOI | MR
[14] Maltsev A. Ya., Novikov S. P., “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Phys. D, 156 (2001), 53–80 ; arXiv:nlin.SI/0006030 | DOI | MR | Zbl
[15] Manin Yu. I., Radul A. O., “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Comm. Math. Phys., 98 (1985), 65–77 | DOI | MR | Zbl
[16] Mathieu P., “Supersymmetric extension of the Korteweg–de Vries equation”, J. Math. Phys., 29 (1988), 2499–2506 | DOI | MR | Zbl
[17] Mathieu P., “Open problems for the super KdV equations”, Bäcklund and Darboux transformations. The geometry of solitons, CRM Proc. Lecture Notes, 29, Amer. Math. Soc., Providence, RI, 2001, 325–334 ; arXiv:math-ph/0005007 | MR | Zbl
[18] Miura R. M., Gardner C. S., Kruskal M. D., “Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion”, J. Math. Phys., 9 (1968), 1204–1209 | DOI | MR | Zbl
[19] Olver P. J., Applications of Lie groups to differential equations, 2nd ed., Springer-Verlag, New York, 1993 | MR
[20] Olver P. J., Sokolov V. V., “Integrable evolution equations on associative algebras”, Comm. Math. Phys., 193 (1998), 245–268 | DOI | MR | Zbl
[21] Roždestvenskiĭ B. L., Janenko N. N., Systems of quasilinear equations and their applicatons to gas dynamics, Translations of Mathematical Monographs, 55, AMS, Providence, RI, 1983 | MR
[22] Sergyeyev A., “Locality of symmetries generated by nonhereditary, inhomogeneous, and time-dependent recursion operators: a new application for formal symmetries”, Acta Appl. Math., 83 (2004), 95–109 ; ; Sergyeyev A., “Why nonlocal recursion operators produce local symmetries: new results and applications”, J. Phys. A: Math. Gen., 38 (2005), 3397–3407 ; arXiv:nlin.SI/0303033arXiv:nlin.SI/0410049 | DOI | MR | Zbl | DOI | MR | Zbl
[23] Svinolupov S. I., “On the analogues of the Burgers equation”, Phys. Lett. A, 135 (1989), 32–36 | DOI | MR
[24] Tsuchida T., Wolf T., “Classification of polynomial integrable systems of mixed scalar and vector evolution equations. I”, J. Phys. A: Math. Gen., 38 (2005), 7691–7733 ; arXiv:nlin.SI/0412003 | DOI | MR | Zbl
[25] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial differential equations”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl
[26] Wolf T., “Applications of Crack in the classification of integrable systems”, Superintegrability in classical and quantum systems, , CRM Proc. Lecture Notes, 37, Amer. Math. Soc., Providence, RI, 2004, 283–300 arXiv:nlin.SI/0301032 | MR | Zbl
[27] Wolf T., Supersymmetric evolutionary equations with higher order symmetries, , 2003 (please contact T. W. for access)