A Banach Principle for Semifinite von Neumann Algebras
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Utilizing the notion of uniform equicontinuity for sequences of functions with the values in the space of measurable operators, we present a non-commutative version of the Banach Principle for $L^\infty$.
Keywords: von Neumann algebra; measure topology; almost uniform convergence; uniform equicontinuity; Banach Principle.
@article{SIGMA_2006_2_a22,
     author = {Vladimir Chilin and Semyon Litvinov},
     title = {A~Banach {Principle} for {Semifinite} von {Neumann} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a22/}
}
TY  - JOUR
AU  - Vladimir Chilin
AU  - Semyon Litvinov
TI  - A Banach Principle for Semifinite von Neumann Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a22/
LA  - en
ID  - SIGMA_2006_2_a22
ER  - 
%0 Journal Article
%A Vladimir Chilin
%A Semyon Litvinov
%T A Banach Principle for Semifinite von Neumann Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a22/
%G en
%F SIGMA_2006_2_a22
Vladimir Chilin; Semyon Litvinov. A Banach Principle for Semifinite von Neumann Algebras. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a22/

[1] Bellow A., Jones R. L., “A Banach principle for $L^\infty$”, Adv. Math., 36 (1996), 155–172 | DOI | MR

[2] Bratelli O., Robinson D. N., Operator algebras and quantum statistical mechanics, Springer, Berlin, 1979

[3] Chilin V., Litvinov S., “Uniform equicontinuity for sequences of homomorphisms into the ring of measurable operators”, Methods Funct. Anal. Topology, 12:2 (2006), 124–130 | MR | Zbl

[4] Chilin V., Litvinov S., Skalski A., “A few remarks in non-commutative ergodic theory”, J. Operator Theory, 53 (2005), 301–320 | MR

[5] Goldstein M., Litvinov S., “Banach principle in the space of $\tau$-measurable operators”, Studia Math., 143 (2000), 33–41 | MR | Zbl

[6] Kadison R. V., “A generalized Schwarz inequality and algebraic invariants for operator algebras”, Ann. of Math., 56 (1952), 494–503 | DOI | MR | Zbl

[7] Litvinov S., Mukhamedov F., “On individual subsequential ergodic theorem in von Neumann algebras”, Studia Math., 145 (2001), 55–62 | DOI | MR | Zbl

[8] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15 (1974), 103–116 | DOI | MR | Zbl

[9] Segal I., “A non-commutative extension of abstract integration”, Ann. of Math., 57 (1953), 401–457 | DOI | MR | Zbl