@article{SIGMA_2006_2_a22,
author = {Vladimir Chilin and Semyon Litvinov},
title = {A~Banach {Principle} for {Semifinite} von {Neumann} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a22/}
}
Vladimir Chilin; Semyon Litvinov. A Banach Principle for Semifinite von Neumann Algebras. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a22/
[1] Bellow A., Jones R. L., “A Banach principle for $L^\infty$”, Adv. Math., 36 (1996), 155–172 | DOI | MR
[2] Bratelli O., Robinson D. N., Operator algebras and quantum statistical mechanics, Springer, Berlin, 1979
[3] Chilin V., Litvinov S., “Uniform equicontinuity for sequences of homomorphisms into the ring of measurable operators”, Methods Funct. Anal. Topology, 12:2 (2006), 124–130 | MR | Zbl
[4] Chilin V., Litvinov S., Skalski A., “A few remarks in non-commutative ergodic theory”, J. Operator Theory, 53 (2005), 301–320 | MR
[5] Goldstein M., Litvinov S., “Banach principle in the space of $\tau$-measurable operators”, Studia Math., 143 (2000), 33–41 | MR | Zbl
[6] Kadison R. V., “A generalized Schwarz inequality and algebraic invariants for operator algebras”, Ann. of Math., 56 (1952), 494–503 | DOI | MR | Zbl
[7] Litvinov S., Mukhamedov F., “On individual subsequential ergodic theorem in von Neumann algebras”, Studia Math., 145 (2001), 55–62 | DOI | MR | Zbl
[8] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15 (1974), 103–116 | DOI | MR | Zbl
[9] Segal I., “A non-commutative extension of abstract integration”, Ann. of Math., 57 (1953), 401–457 | DOI | MR | Zbl