On the Degenerate Multiplicity of the $\mathrm{sl}_2$ Loop Algebra for the 6V Transfer Matrix at Roots of Unity
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the main result of cond-mat/0503564. The Hamiltonian of the XXZ spin chain and the transfer matrix of the six-vertex model has the $sl_2$ loop algebra symmetry if the $q$ parameter is given by a root of unity, $q_0^{2N}=1$, for an integer $N$. We discuss the dimensions of the degenerate eigenspace generated by a regular Bethe state in some sectors, rigorously as follows: We show that every regular Bethe ansatz eigenvector in the sectors is a highest weight vector and derive the highest weight $\bar d_k^{\pm}$, which leads to evaluation parameters $a_j$. If the evaluation parameters are distinct, we obtain the dimensions of the highest weight representation generated by the regular Bethe state.
Keywords: loop algebra; the six-vertex model; roots of unity representations of quantum groups; Drinfeld polynomial.
@article{SIGMA_2006_2_a20,
     author = {Tetsuo Deguchi},
     title = {On the {Degenerate} {Multiplicity} of the $\mathrm{sl}_2$ {Loop} {Algebra} for the {6V} {Transfer} {Matrix} at {Roots} of {Unity}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a20/}
}
TY  - JOUR
AU  - Tetsuo Deguchi
TI  - On the Degenerate Multiplicity of the $\mathrm{sl}_2$ Loop Algebra for the 6V Transfer Matrix at Roots of Unity
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a20/
LA  - en
ID  - SIGMA_2006_2_a20
ER  - 
%0 Journal Article
%A Tetsuo Deguchi
%T On the Degenerate Multiplicity of the $\mathrm{sl}_2$ Loop Algebra for the 6V Transfer Matrix at Roots of Unity
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a20/
%G en
%F SIGMA_2006_2_a20
Tetsuo Deguchi. On the Degenerate Multiplicity of the $\mathrm{sl}_2$ Loop Algebra for the 6V Transfer Matrix at Roots of Unity. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a20/

[1] Alcaraz F. C., Grimm U., Rittenberg V., “The XXZ Heisenberg chain, conformal invariance and the operator content of $c1$ systems”, Nucl. Phys. B, 316 (1989), 735–768 | DOI | MR

[2] Baxter R. J., “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I. Some fundamental eigenvectors”, Ann. Phys., 76 (1973), 1–24 | DOI | Zbl

[3] Baxter R. J., “Completeness of the Bethe ansatz for the six and eight vertex models”, J. Statist. Phys., 108 (2002), 1–48 ; arXiv:cond-mat/0111188 | DOI | MR | Zbl

[4] Baxter R. J., “The six and eight-vertex models revisited”, J. Statist. Phys., 116 (2004), 43–66 ; arXiv:cond-mat/0403138 | DOI | MR | Zbl

[5] Braak D., Andrei N., “On the spectrum of the XXZ-chain at roots of unity”, J. Statist. Phys., 105 (2001), 677–709 ; arXiv:cond-mat/0106593 | DOI | MR | Zbl

[6] Chari V., Pressley A., “Quantum affine algebras”, Comm. Math. Phys., 142 (1991), 261–283 | DOI | MR | Zbl

[7] Chari V., Pressley A., “Quantum affine algebras at roots of unity”, Represent. Theory, 1 (1997), 280–328 ; arXiv:q-alg/9609031 | DOI | MR | Zbl

[8] Chari V., Pressley A., “Weyl modules for classical and quantum affine algebras”, Represent. Theory, 5 (2001), 191–223 ; arXiv:math.QA/0004174 | DOI | MR | Zbl

[9] Deguchi T., “Construction of some missing eigenvectors of the XYZ spin chain at the discrete coupling constants and the exponentially large spectral degeneracy of the transfer matrix”, J. Phys. A: Math. Gen., 35 (2002), 879–895 ; arXiv:cond-mat/0109078 | DOI | MR | Zbl

[10] Deguchi T., “The 8V CSOS model and the $sl_2$ loop algebra symmetry of the six-vertex model at roots of unity,”, Internat. J. Modern Phys. B, 16 (2002), 1899–1905 ; arXiv:cond-mat/0110121 | DOI | MR | Zbl

[11] Deguchi T., XXZ Bethe states as highest weight vectors of the $sl_2$ loop algebra at roots of unity, arXiv:cond-mat/0503564

[12] Deguchi T., “The six-vertex model at roots of unity and some highest weight representations of the $sl_2$ loop algebra”, Ann. Henri Poincaré, 7:7–8 (2006), 1531–1540 | DOI | MR | Zbl

[13] Deguchi T., Fabricius K., McCoy B. M., “The $sl_2$ loop algebra symmetry of the six-vertex model at roots of unity”, J. Statist. Phys., 102 (2001), 701–736 ; arXiv:cond-mat/9912141 | DOI | MR | Zbl

[14] Fabricius K., McCoy B. M., “Bethe's equation is incomplete for the XXZ model at roots of unity”, J. Statist. Phys., 103 (2001), 647–678 ; arXiv:cond-mat/0009279 | DOI | MR | Zbl

[15] Fabricius K., McCoy B. M., “Completing Bethe's equations at roots of unity”, J. Statist. Phys., 104 (2001), 573–587 ; arXiv:cond-mat/0012501 | DOI | MR | Zbl

[16] Fabricius K., McCoy B. M., “Evaluation parameters and Bethe roots for the six-vertex model at roots of unity” (MathPhys Odyssey 2001), Progress in Mathematical Physics, 23, eds. M. Kashiwara and T. Miwa, Birkhäuser, Boston, 2002, 119–144 ; arXiv:cond-mat/0108057 | MR | Zbl

[17] Fabricius K., McCoy B. M., “New developments in the eight-vertex model”, J. Statist Phys., 111 (2003), 323–337 ; ; Fabricius K., McCoy B. M., “Functional equations and fusion matrices for the eight-vertex model”, Publ. Res. Inst. Math. Sci., 40 (2004), 905–932 ; arXiv:cond-mat/0207177arXiv:cond-mat/0311122 | DOI | MR | Zbl | DOI | MR | Zbl

[18] Fabricius K., McCoy B. M., “New developments in the eight-vertex model. II. Chains of odd length”, J. Stat. Phys., 120:1–2 (2005), 37–70 ; arXiv:cond-mat/0410113 | DOI | MR | Zbl

[19] Jimbo M., Private communication, 2004, July

[20] Kac V., Infinite dimensional Lie algebras, Cambridge University Press, Cambridge, 1990 | MR

[21] Korepanov I. G., “Hidden symmetries in the 6-vertex model of statistical physics”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 215, 1994, 163–177 ; English transl.: J. Math. Sci. (New York), 85 (1997), 1661–1670 ; arXiv:hep-th/9410066 | MR | DOI

[22] Korepanov I. G., “Vacuum curves of the $\cal L$-operators related to the six-vertex model”, St. Petersburg Math. J., 6 (1995), 349–364 | MR

[23] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[24] Korff C., McCoy B. M., “Loop symmetry of integrable vertex models at roots of unity”, Nucl. Phys. B, 618 (2001), 551–569 ; arXiv:hep-th/0104120 | DOI | MR | Zbl

[25] Lusztig G., “Modular representations and quantum groups”, Contemp. Math., 82 (1989), 59–77 | MR | Zbl

[26] Lusztig G., Introduction to quantum groups, Birkhäuser, Boston, 1993 | MR | Zbl

[27] Pasquier V., Saleur H.,, “Common structures between finite systems and conformal field theories through quantum groups”, Nucl. Phys. B, 330 (1990), 523–556 | DOI | MR

[28] Takhtajan L., Faddeev L., “Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model”, J. Sov. Math., 24 (1984), 241–267 | DOI

[29] Tarasov V. O., “Cyclic monodromy matrices for the $R$-matrix of the six-vertex model and the chiral Potts model with fixed spin boundary conditions”, Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publishing, River Edge, NJ, 1992, 963–975 | MR

[30] Tarasov V. O., “On the Bethe vectors for the XXZ model at roots of unity”, Vopr. Kvant. Teor. Polya i Stat. Fiz., 17, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 291, 2002, 251–262 ; arXiv:math.QA/0306032 | MR | Zbl