@article{SIGMA_2006_2_a18,
author = {Nikolai Iorgov},
title = {Eigenvectors of {Open} {Bazhanov{\textendash}Stroganov} {Quantum} {Chain}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a18/}
}
Nikolai Iorgov. Eigenvectors of Open Bazhanov–Stroganov Quantum Chain. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a18/
[1] Bazhanov V. V., Stroganov Yu. G., “Chiral Potts model as a descendant of the six-vertex model”, J. Statist. Phys., 59 (1990), 799–817 | DOI | MR | Zbl
[2] Korepanov I. G., Hidden symmetries in the 6-vertex model, VINITI No. 1472-V87, Chelyabinsk Polytechnical Inst., 1987 (in Russian); Korepanov I. G., “Hidden symmetries in the 6-vertex model of statistical physics”, Zap. Nauchn. Sem. Otdel. Mat. Inst. Steklov. (POMI), 215, 1994, 163–177 ; English transl.: J. Math. Sci. (New York), 85 (1997), 1661–1670 ; arXiv:hep-th/9410066 | MR | DOI
[3] Baxter R. J., “Superintegrable chiral Potts model: thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian”, J. Statist. Phys., 57 (1989), 1–39 | DOI | MR
[4] Baxter R. J., Bazhanov V. V., Perk J. H. H., “Functional relations for the transfer matrices of the chiral Potts model”, Internat. J. Modern Phys. B, 4 (1990), 803–869 | DOI | MR
[5] Baxter R. J., “Chiral Potts model: eigenvalues of the transfer matrix”, Phys. Lett. A, 146 (1990), 110–114 | DOI | MR
[6] Baxter R. J., “Derivation of the order parameter of the chiral Potts model 3 pages”, Phys. Rev. Lett., 94 (2005), 130602 ; arXiv:cond-mat/0501227 | DOI | MR
[7] Kharchev S., Lebedev D.,, “Eigenfunctions of $GL(N,\mathbb{R})$ Toda chain: the Mellin–Barnes representation”, JETP Lett., 71 (2000), 235–238 ; arXiv:hep-th/0004065 | DOI
[8] Sklyanin E. K., “Quantum inverse scattering method. Selected topics”, Nankai Lectures in Mathematical Physics “Quantum Group and Quantum Integrable Systems”, ed. Mo-Lin Ge, World Scientific, Singapore, 1992, 63–97 | MR
[9] Kharchev S., Lebedev D., Semenov-Tian-Shansky M., “Unitary representations of $U_{q}(sl(2,{\mathbb R}))$, the modular double, and the multiparticle $q$-deformed Toda chains”, Comm. Math. Phys., 225:3 (2002), 573–609 ; arXiv:hep-th/0102180 | DOI | MR | Zbl
[10] Iorgov N., Shadura V., “Wave functions of the Toda chain with boundary interaction”, Theoret. and Math. Phys., 142:2 (2005), 289–305 ; arXiv:nonlin.SI/0411002 | MR | Zbl
[11] von Gehlen G., Iorgov N., Pakuliak S., Shadura V., “Baxter–Bazhanov–Stoganov model: separation of variables and Baxter equation”, J. Phys. A: Math. Gen., 39 (2006), 7257–7282 | DOI | MR | Zbl
[12] Bugrij A. I., Iorgov N. Z., Shadura V. N., “Alternative method of calculating the eigenvalues of the transfer matrix of the $\tau_2$ model for $N=2$”, JETP Lett., 82 (2005), 311–315 | DOI
[13] Lisovyy O., “Transfer matrix eigenvectors of the Baxter–Bazhanov–Stroganov $\tau_2$-model for $N=2$”, J. Phys. A: Math. Gen., 39 (2006), 2265–2285 ; arXiv:nlin.SI/0512026 | DOI | MR | Zbl
[14] Tarasov V. O., “Cyclic monodromy matrices for the $R$-matrix of the six-vertex model and the chiral Potts model with fixed spin boundary conditions”, Internat. J. Modern Phys. A Suppl., 7 (1992), 963–975 | DOI | MR | Zbl
[15] Pakuliak S., Sergeev S., “Quantum relativistic Toda chain at root of unity: isospectrality, modified $Q$-operator and functional Bethe ansatz”, Int. J. Math. Math. Sci., 31 (2002), 513–554 ; arXiv:nlin.SI/0205037 | DOI | MR
[16] von Gehlen G., Pakuliak S., Sergeev S., “The Bazhanov–Stroganov model from 3D approach”, J. Phys. A: Math. Gen., 38 (2005), 7269–7298 ; arXiv:nlin.SI/0505019 | DOI | MR
[17] Bazhanov V. V., Baxter R. J., “Star-triangle relation for a three dimensional model”, J. Statist. Phys., 71 (1993), 839–864 ; arXiv:hep-th/9212050 | DOI | MR