Eigenvectors of Open Bazhanov–Stroganov Quantum Chain
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this contribution we give an explicit formula for the eigenvectors of Hamiltonians of open Bazhanov–Stroganov quantum chain. The Hamiltonians of this quantum chain is defined by the generation polynomial $A_n(\lambda)$ which is upper-left matrix element of monodromy matrix built from the cyclic $L$-operators. The formulas for the eigenvectors are derived using iterative procedure by Kharchev and Lebedev and given in terms of $w_p(s)$-function which is a root of unity analogue of $\Gamma_q$-function.
Keywords: quantum integrable systems; Bazhanov–Stroganov quantum chain.
@article{SIGMA_2006_2_a18,
     author = {Nikolai Iorgov},
     title = {Eigenvectors of {Open} {Bazhanov{\textendash}Stroganov} {Quantum} {Chain}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a18/}
}
TY  - JOUR
AU  - Nikolai Iorgov
TI  - Eigenvectors of Open Bazhanov–Stroganov Quantum Chain
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a18/
LA  - en
ID  - SIGMA_2006_2_a18
ER  - 
%0 Journal Article
%A Nikolai Iorgov
%T Eigenvectors of Open Bazhanov–Stroganov Quantum Chain
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a18/
%G en
%F SIGMA_2006_2_a18
Nikolai Iorgov. Eigenvectors of Open Bazhanov–Stroganov Quantum Chain. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a18/

[1] Bazhanov V. V., Stroganov Yu. G., “Chiral Potts model as a descendant of the six-vertex model”, J. Statist. Phys., 59 (1990), 799–817 | DOI | MR | Zbl

[2] Korepanov I. G., Hidden symmetries in the 6-vertex model, VINITI No. 1472-V87, Chelyabinsk Polytechnical Inst., 1987 (in Russian); Korepanov I. G., “Hidden symmetries in the 6-vertex model of statistical physics”, Zap. Nauchn. Sem. Otdel. Mat. Inst. Steklov. (POMI), 215, 1994, 163–177 ; English transl.: J. Math. Sci. (New York), 85 (1997), 1661–1670 ; arXiv:hep-th/9410066 | MR | DOI

[3] Baxter R. J., “Superintegrable chiral Potts model: thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian”, J. Statist. Phys., 57 (1989), 1–39 | DOI | MR

[4] Baxter R. J., Bazhanov V. V., Perk J. H. H., “Functional relations for the transfer matrices of the chiral Potts model”, Internat. J. Modern Phys. B, 4 (1990), 803–869 | DOI | MR

[5] Baxter R. J., “Chiral Potts model: eigenvalues of the transfer matrix”, Phys. Lett. A, 146 (1990), 110–114 | DOI | MR

[6] Baxter R. J., “Derivation of the order parameter of the chiral Potts model 3 pages”, Phys. Rev. Lett., 94 (2005), 130602 ; arXiv:cond-mat/0501227 | DOI | MR

[7] Kharchev S., Lebedev D.,, “Eigenfunctions of $GL(N,\mathbb{R})$ Toda chain: the Mellin–Barnes representation”, JETP Lett., 71 (2000), 235–238 ; arXiv:hep-th/0004065 | DOI

[8] Sklyanin E. K., “Quantum inverse scattering method. Selected topics”, Nankai Lectures in Mathematical Physics “Quantum Group and Quantum Integrable Systems”, ed. Mo-Lin Ge, World Scientific, Singapore, 1992, 63–97 | MR

[9] Kharchev S., Lebedev D., Semenov-Tian-Shansky M., “Unitary representations of $U_{q}(sl(2,{\mathbb R}))$, the modular double, and the multiparticle $q$-deformed Toda chains”, Comm. Math. Phys., 225:3 (2002), 573–609 ; arXiv:hep-th/0102180 | DOI | MR | Zbl

[10] Iorgov N., Shadura V., “Wave functions of the Toda chain with boundary interaction”, Theoret. and Math. Phys., 142:2 (2005), 289–305 ; arXiv:nonlin.SI/0411002 | MR | Zbl

[11] von Gehlen G., Iorgov N., Pakuliak S., Shadura V., “Baxter–Bazhanov–Stoganov model: separation of variables and Baxter equation”, J. Phys. A: Math. Gen., 39 (2006), 7257–7282 | DOI | MR | Zbl

[12] Bugrij A. I., Iorgov N. Z., Shadura V. N., “Alternative method of calculating the eigenvalues of the transfer matrix of the $\tau_2$ model for $N=2$”, JETP Lett., 82 (2005), 311–315 | DOI

[13] Lisovyy O., “Transfer matrix eigenvectors of the Baxter–Bazhanov–Stroganov $\tau_2$-model for $N=2$”, J. Phys. A: Math. Gen., 39 (2006), 2265–2285 ; arXiv:nlin.SI/0512026 | DOI | MR | Zbl

[14] Tarasov V. O., “Cyclic monodromy matrices for the $R$-matrix of the six-vertex model and the chiral Potts model with fixed spin boundary conditions”, Internat. J. Modern Phys. A Suppl., 7 (1992), 963–975 | DOI | MR | Zbl

[15] Pakuliak S., Sergeev S., “Quantum relativistic Toda chain at root of unity: isospectrality, modified $Q$-operator and functional Bethe ansatz”, Int. J. Math. Math. Sci., 31 (2002), 513–554 ; arXiv:nlin.SI/0205037 | DOI | MR

[16] von Gehlen G., Pakuliak S., Sergeev S., “The Bazhanov–Stroganov model from 3D approach”, J. Phys. A: Math. Gen., 38 (2005), 7269–7298 ; arXiv:nlin.SI/0505019 | DOI | MR

[17] Bazhanov V. V., Baxter R. J., “Star-triangle relation for a three dimensional model”, J. Statist. Phys., 71 (1993), 839–864 ; arXiv:hep-th/9212050 | DOI | MR