Mathematical Analysis of a Generalized Chiral Quark Soliton Model
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalized version of the so-called chiral quark soliton model (CQSM) in nuclear physics is introduced. The Hamiltonian of the generalized CQSM is given by a Dirac type operator with a mass term being an operator-valued function. Some mathematically rigorous results on the model are reported. The subjects included are: (i) supersymmetric structure; (ii) spectral properties; (iii) symmetry reduction; (iv) a unitarily equivalent model.
Keywords: chiral quark soliton model; Dirac operator; supersymmetry; ground state; symmetry reduction.
@article{SIGMA_2006_2_a17,
     author = {Asao Arai},
     title = {Mathematical {Analysis} of {a~Generalized} {Chiral} {Quark} {Soliton} {Model}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a17/}
}
TY  - JOUR
AU  - Asao Arai
TI  - Mathematical Analysis of a Generalized Chiral Quark Soliton Model
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a17/
LA  - en
ID  - SIGMA_2006_2_a17
ER  - 
%0 Journal Article
%A Asao Arai
%T Mathematical Analysis of a Generalized Chiral Quark Soliton Model
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a17/
%G en
%F SIGMA_2006_2_a17
Asao Arai. Mathematical Analysis of a Generalized Chiral Quark Soliton Model. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a17/

[1] Arai A., Hayashi K., Sasaki I., “Spectral properties of a Dirac operator in the chiral quark soliton model”, J. Math. Phys., 46:5 (2005), 052360, 12 pp., ages | DOI | MR

[2] Kalf H., Yamada O., “Essential self-adjointness of $n$-dimensional Dirac operators with a variable mass term”, J. Math. Phys., 42 (2001), 2667–2676 | DOI | MR | Zbl

[3] Reed M., Simon B., Methods of modern mathematical physics I: Functional analysis, Academic Press, New York, 1972 | MR

[4] Reed M., Simon B., Methods of modern mathematical physics IV: Analysis of operators, Academic Press, New York, 1978 | MR | Zbl

[5] Sawado N., “The $SU(3)$ dibaryons in the chiral quark soliton model”, Phys. Lett. B, 524 (2002), 289–296 | DOI

[6] Sawado N., Private communication

[7] Thaller B., The Dirac equation, Springer-Verlag, 1992 | MR