@article{SIGMA_2006_2_a15,
author = {Nobuyuki Sawado and Noriko Shiiki and Shingo Tanaka},
title = {Extended {Soliton} {Solutions} in an {Effective} {Action} for $\mathrm{SU}(2)$ {Yang{\textendash}Mills} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a15/}
}
TY - JOUR
AU - Nobuyuki Sawado
AU - Noriko Shiiki
AU - Shingo Tanaka
TI - Extended Soliton Solutions in an Effective Action for $\mathrm{SU}(2)$ Yang–Mills Theory
JO - Symmetry, integrability and geometry: methods and applications
PY - 2006
VL - 2
UR - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a15/
LA - en
ID - SIGMA_2006_2_a15
ER -
%0 Journal Article
%A Nobuyuki Sawado
%A Noriko Shiiki
%A Shingo Tanaka
%T Extended Soliton Solutions in an Effective Action for $\mathrm{SU}(2)$ Yang–Mills Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a15/
%G en
%F SIGMA_2006_2_a15
Nobuyuki Sawado; Noriko Shiiki; Shingo Tanaka. Extended Soliton Solutions in an Effective Action for $\mathrm{SU}(2)$ Yang–Mills Theory. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a15/
[1] Faddeev L., Niemi A., “Knots and particles”, Nature, 387 (1997), 58–61 ; arXiv:hep-th/9610193 | DOI
[2] Gladikowski J., Hellmund M., “Static solitons with nonzero hopf number”, Phys. Rev. D, 56 (1997), 5194–5199 ; arXiv:hep-th/9609035 | DOI | MR
[3] Battye R. A., Sutcliffe P. M., “Solitons, links and knots”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 455 (1999), 4301–4331 ; arXiv:hep-th/9811077 | MR
[4] Hietarinta J., Salo P., “Faddeev–Hopf knots: dynamics of linked unknots”, Phys. Lett. B, 451 (1999), 60–67 ; arXiv:hep-th/9811053 | DOI | MR | Zbl
[5] Hietarinta J., Salo P., “Ground state in the Faddeev–Skyrme model”, Phys. Rev. D, 62 (2000), 081701, 4 pp., ages | DOI
[6] Aratyn H., Ferreira L. A., Zimerman A. H., “Toroidal solitons in (3+1)-dimensional integrable theories”, Phys. Lett. B, 456 (1999), 162–170 ; arXiv:hep-th/9902141 | DOI | MR | Zbl
[7] Babaev E., Faddeev L., Niemi A. J., “Hidden symmetry and duality in a charged two condensate Bose system”, Phys. Rev. B, 65 (2002), 100512, 4 pp., ages ; arXiv:cond-mat/0106152 | DOI
[8] Fayzullaev B. A., Musakhanov M. M., Pak D. G., Siddikov M., “Knot soliton in Weinberg–Salam model”, Phys. Lett. B, 609 (2005), 442–448 ; arXiv:hep-th/0412282 | DOI | Zbl
[9] Faddeev L., Niemi A. J., “Partially dual variables in $SU(2)$ Yang–Mills theory”, Phys. Rev. Lett., 82 (1999), 1624–1627 ; arXiv:hep-th/9807069 | DOI | MR | Zbl
[10] Langmann E., Niemi A. J., “Towards a string representation of infrared $SU(2)$ Yang–Mills theory”, Phys. Lett. B, 463 (1999), 252–256 ; arXiv:hep-th/9905147 | DOI | MR | Zbl
[11] Shabanov S. V., “An effective action for monopoles and knot solitons in Yang–Mills theory”, Phys. Lett. B, 458 (1999), 322–330 ; arXiv:hep-th/9903223 | DOI | MR | Zbl
[12] Cho Y. M., Lee H. W., Pak D. G., “Faddeev–Niemi conjecture and effective action of QCD”, Phys. Lett. B, 525 (2002), 347–354 ; arXiv:hep-th/0105198 | DOI | Zbl
[13] Gies H., “Wilsonian effective action for $SU(2)$ Yang–Mills theory with Cho–Faddeev–Niemi–Shabanov decomposition”, Phys. Rev. D, 63 (2001), 125023, 8 pp., ages ; arXiv:hep-th/0102026 | DOI
[14] Dhar A., Shankar R., Wadia S. R., “Nambu–Jona–Lasinio type effective Lagrangian. 2. Anomalies and nonlinear Lagrangian of low-energy, large $N$ QCD”, Phys. Rev. D, 31 (1985), 3256–3267 | DOI
[15] Aitchison I., Fraser C., Tudor E., Zuk J., “Failure of the derivative expansion for studying stability of the baryon as a chiral soliton”, Phys. Lett. B, 165 (1985), 162–166 | DOI
[16] Marleau L., Rivard J. F., “A generating function for all orders skyrmions”, Phys. Rev. D, 63 (2001), 036007, 7 pp., ages ; arXiv:hep-ph/0011052 | DOI
[17] Vakulenko A. F., Kapitanskii L. V., “Stability of solitons in $S^2$ in the nonlinear $\sigma$ model”, Sov. Phys. Dokl., 24:6 (1979), 433–434 | Zbl
[18] Ward R. S., “Hopf solitons on $S^3$ and $\mathbf R^3$”, Nonlinearity, 12 (1999), 241–246 ; arXiv:hep-th/9811176 | DOI | MR | Zbl
[19] Manton N., Sutcliffe P., Topological solitons, Cambridge University Press, 2004 | MR | Zbl
[20] Pais A., Uhlenbeck G. E., “On field theories with non-localized action”, Phys. Rev., 79 (1950), 145–165 | DOI | MR | Zbl
[21] Smilga A. V., “Benign versus Malicious ghosts in higher-derivative theories”, Nucl. Phys. B, 706 (2005), 598–614 ; arXiv:hep-th/0407231 | DOI | MR | Zbl
[22] Eliezer D. A., Woodard R. P., “The problem of nonlocality in string theory”, Nucl. Phys. B, 325 (1989), 389–469 | DOI | MR
[23] Jaén X., Llosa L. Morina A., “A reduction of order two for infinite order Lagrangians”, Phys. Rev. D, 34 (1986), 2302–2311 | DOI
[24] Simon J. Z., “Higher derivative Lagrangians, nonlocality, problems and solutions”, Phys. Rev. D, 41 (1990), 3720–3733 | DOI | MR
[25] Faddeev L., Niemi A. J., Wiedner U., “Glueballs, closed fluxtubes, and eta(1440)”, Phys. Rev. D, 70 (2004), 114033, 5 pp., ages ; arXiv:hep-ph/0308240 | DOI
[26] Bae W. S., Cho Y. M., Park B. S., Reinterpretation of Skyrme theory, arXiv:hep-th/0404181
[27] Kondo K.-I., “Magnetic condensation, Abelian dominance, and instability of Savvidy vacuum”, Phys. Lett. B, 600 (2004), 287–296 ; arXiv:hep-th/0410024 | DOI | MR