@article{SIGMA_2006_2_a12,
author = {Siamak Khademi and Sadollah Nasiri},
title = {Operator {Gauge} {Symmetry} in {QED}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a12/}
}
Siamak Khademi; Sadollah Nasiri. Operator Gauge Symmetry in QED. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a12/
[1] Greiner W., Müller B., Quantum mechanics: symmetries, Springer-Verlag, New York, 1989 | MR | Zbl
[2] Karatas D. L., Kowalski K. L., “Noether's theorem for local gauge transformation”, Am. J. Phys., 58 (1990), 123–131 | DOI | MR
[3] Goldestein H., Classical mechanics, 2nd ed., Addison-Wesley, Massachusetts, 1980 | MR
[4] Cocconi G., “Upper limits on the electric charge of photon”, Am. J. Phys., 60 (1992), 750–751 | DOI
[5] Cheng T. P., Li L.-F.,, “Erratum “Resource letter GI-1: gauge invariance””, Am. J. Phys., 56:11 (1988), 1048 | DOI | MR
[6] Kobe D. H., “Gauge transformations in classical mechanics as canonical transformation”, Am. J. Phys., 56 (1988), 252–254 | DOI
[7] Baxter C., “Jaynes–Cummings Hamiltonian in a covariant gauge”, Phys. Rev. A, 44 (1991), 3178–3179 | DOI | MR
[8] Kobe D. H., “Gauge invariant in second quantization: application to Hartree–Fock and generalized random-phase approximation”, Phys. Rev. A, 19 (1979), 1876–1885 | DOI
[9] Baxter C., “$\alpha$-Lorentz gauge in QED”, Ann. Phys., 206 (1991), 221–236 | DOI | MR
[10] Sakurai J. J., Advanced quantum mechanics, 11th ed., Addison-Wesley, New York, 1987
[11] Kobe D. H., Yang K. H., “Gauge transformation of the time evolution operator”, Phys. Rev. A, 32 (1985), 952–958 | DOI
[12] Kobe D. H., “Gauge transformation and the electric dipole approximation”, Am. J. Phys., 50 (1982), 128–133 | DOI
[13] Zumino B., “Gauge properties of propagators in quantum electrodynamics”, J. Math. Phys., 1 (1960), 1–7 | DOI | MR | Zbl
[14] Gaete P., “On gauge-invariant variables in QED”, Z. Phys. C, 76 (1997), 355–361 | DOI
[15] Manoukian E. B., “Action principle and quantization of gauge fields”, Phys. Rev. D, 34 (1986), 3739–3749 | DOI | MR
[16] Manoukian E. B., Siranan S., “Action principle and algebraic approach to gauge transformations in gauge theories”, Internat. J. Theoret. Phys., 44 (2005), 53–62 | DOI | MR | Zbl
[17] Mandel L., “Electric dipole interaction in quantum optics”, Phys. Rev. A, 20 (1979), 1590–1592 | DOI
[18] Kobe D. H., Gray R. D., “Operator gauge transformation in nonrelativistic quantum electrodynamics: application to the multipolar Hamiltonian”, Nuovo Cimento Soc. Ital. Fis. B, 86 (1985), 155–170 | DOI
[19] Healy W. P., “Comment on “Maxwell's equations in the multipolar representation””, Phys. Rev. A, 26 (1982), 1798–1799 | DOI
[20] Power E. A., Thirunamachandran T., “Quantum electrodynamics with nonrelativistic sources. 1. Transformation to the multipolar formalism for second-quantized electron and Maxwell interacting fields”, Phys. Rev. A, 28 (1983), 2649–2662 | DOI | MR
[21] Haller K., “Maxwell's equations in the multipolar representation”, Phys. Rev. A, 26 (1982), 26–27 | DOI
[22] Ackerhalt J. R., Milloni P. W., “Interaction Hamiltonian of quantum optic”, J. Opt. Soc. Am. B, 1 (1984), 116–120 | DOI
[23] Doebner H. D., Goldin G. A., Nattermann P., “Gauge transformations in quantum mechanics and the unification of nonlinear Schrödinger equation”, J. Math. Phys., 40 (1999), 49–63 | DOI | MR | Zbl
[24] Goldin G. A., Shtelen V. M., “Generalization of Yang–Mills theory with nonlinear constitutive equation”, J. Phys. A: Math. Gen., 37 (2004), 10711–10718 ; arXiv:hep-th/0401093 | DOI | MR | Zbl