@article{SIGMA_2006_2_a10,
author = {Wolodymyr Skripnik},
title = {Order {Parameters} in {XXZ-Type} {Spin} $\frac12$ {Quantum} {Models} with {Gibbsian} {Ground} {States}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a10/}
}
TY - JOUR AU - Wolodymyr Skripnik TI - Order Parameters in XXZ-Type Spin $\frac12$ Quantum Models with Gibbsian Ground States JO - Symmetry, integrability and geometry: methods and applications PY - 2006 VL - 2 UR - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a10/ LA - en ID - SIGMA_2006_2_a10 ER -
Wolodymyr Skripnik. Order Parameters in XXZ-Type Spin $\frac12$ Quantum Models with Gibbsian Ground States. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a10/
[1] Dorlas T., Skrypnik W., “Two order parameters in quantum XZ spin midels with Gibbsian ground states”, J. Phys. A: Math. Gen., 37 (2004), 6623–6632 | DOI | MR | Zbl
[2] Kirkwood J., Thomas L., “Expansions and phase transitions for the ground state of quantum Ising lattice systems”, Comm. Math. Phys., 88 (1983), 569–580 | DOI | MR
[3] Matsui T., “A link between quantum and classical Potts models”, J. Statist. Phys., 59 (1990), 781–798 | DOI | MR | Zbl
[4] Matsui T., “Uniqueness of translation invariant ground state in quantum spin systems”, Comm. Math. Phys., 126 (1990), 453–467 | DOI | MR | Zbl
[5] Alcaraz F., “Exact steady states of asymmetric diffusion and two-species annihilation with back reaction from the ground state of quantum spin model”, Internat. J. Modern Phys., 25–26 (1994) ; 3449–3461 | MR | MR
[6] Alcaraz F., Salinas S., Wrechinsky W., “Anisotropic quantum domains”, Phys. Rev. Lett., 5 (1995), 930–933 | DOI
[7] Matsui T., “On ground state degeneracy of $Z_2$ symmetric quantum spin models”, Publ. Res. Inst. Math. Sci., 27 (1991), 658–679 | DOI | MR
[8] Thomas L., Yin Z., “Low temperature expansions for the Gibbs states of quantum Ising lattice systems”, J. Math. Phys., 10 (1984), 3128–3134 | DOI | MR