On the Effective Action of Dressed Mean Fields for $\mathcal N=4$ Super-Yang–Mills Theory
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of the general considerations such as $R$-operation and Slavnov–Taylor identity we show that the effective action, being understood as Legendre transform of the logarithm of the path integral, possesses particular structure in $\mathcal N=4$ supersymmetric Yang–Mills theory for kernels of the effective action expressed in terms of the dressed effective fields. These dressed effective fields have been introduced in our previous papers as actual variables of the effective action. The concept of dressed effective fields naturally appears in the framework of solution to Slavnov–Taylor identity. The particularity of the structure is independence of these kernels on the ultraviolet regularization scale $\Lambda.$ These kernels are functions of mutual spacetime distances and of the gauge coupling. The fact that $\beta$ function in this theory vanishes is used significantly.
Keywords: $R$-operation; gauge symmetry; $\mathcal N=4$ supersymmetry; Slavnov–Taylor identity.
@article{SIGMA_2006_2_a1,
     author = {Gorazd Cvetic and Igor Kondrashuk and Ivan Schmidt},
     title = {On the {Effective} {Action} of {Dressed} {Mean} {Fields} for $\mathcal N=4$ {Super-Yang{\textendash}Mills} {Theory}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a1/}
}
TY  - JOUR
AU  - Gorazd Cvetic
AU  - Igor Kondrashuk
AU  - Ivan Schmidt
TI  - On the Effective Action of Dressed Mean Fields for $\mathcal N=4$ Super-Yang–Mills Theory
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a1/
LA  - en
ID  - SIGMA_2006_2_a1
ER  - 
%0 Journal Article
%A Gorazd Cvetic
%A Igor Kondrashuk
%A Ivan Schmidt
%T On the Effective Action of Dressed Mean Fields for $\mathcal N=4$ Super-Yang–Mills Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a1/
%G en
%F SIGMA_2006_2_a1
Gorazd Cvetic; Igor Kondrashuk; Ivan Schmidt. On the Effective Action of Dressed Mean Fields for $\mathcal N=4$ Super-Yang–Mills Theory. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a1/

[1] Slavnov A. A., “Ward identities in gauge theories”, Teor. Mat. Fiz., 10:2 (1972), 153–161 ; English transl.: Theor. Math. Phys., 10:2 (1972), 99–107 ; Taylor J. C., “Ward identities and charge renormalization of the Yang–Mills field”, Nucl. Phys. B, 33 (1971), 436–444 ; Slavnov A. A., “Renormalization of supersymmetric gauge theories. 2. Nonabelian case”, Nucl. Phys. B, 97 (1975), 155–164 | DOI | DOI | MR | DOI | MR

[2] Becchi C., Rouet A., Stora R., “Renormalization of the Abelian Higgs–Kibble model”, Comm. Math. Phys., 42 (1975), 127–162 | DOI | MR

[3] Slavnov A., Faddeev L., Introduction to quantum theory of gauge fields, Nauka, Moscow, 1988 | MR | Zbl

[4] Kondrashuk I., Cvetič G., Schmidt I., “Approach to solve Slavnov–Taylor identities in nonsupersymmetric non-Abelian gauge theories”, Phys. Rev. D, 67 (2003), 065006, 16 pp., ages ; arXiv:hep-ph/0203014 | DOI

[5] Cvetič G., Kondrashuk I., Schmidt I., “QCD effective action with dressing functions: consistency checks in perturbative regime”, Phys. Rev. D, 67 (2003), 065007, 16 pp., ages ; arXiv:hep-ph/0210185 | DOI

[6] Intersci. Monogr. Phys. Astron., 3, 1959 | MR | Zbl

[7] Maldacena J. M., “The large $N$ limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2 (1998), 231–252 ; Maldacena J. M., “The large $N$ limit of superconformal field theories and supergravity”, Int. J. Theor. Phys., 38 (1999), 1113–1133 ; arXiv:hep-th/9711200 | MR | Zbl | DOI | MR | Zbl

[8] Berenstein D., Maldacena J. M., Nastase H., “Strings in flat space and plane waves from $\mathcal N=4$ super-Yang–Mills”, JHEP, 04 (2002), paper 013, 30 pp., ages ; arXiv:hep-th/0202021

[9] Witten E., “Perturbative gauge theory as a string theory in twistor space”, Comm. Math. Phys., 252 (2004), 189–258 ; arXiv:hep-th/0312171 | DOI | MR | Zbl

[10] Bern Z., Dixon L. J., Dunbar D. C., Kosower D. A., “One loop $n$ point gauge theory amplitudes, unitarity and collinear limits”, Nucl. Phys. B, 425 (1994), 217–260 ; arXiv:hep-ph/9403226 | DOI | MR | Zbl

[11] Ferrara S., Zumino B., “Supergauge invariant Yang–Mills theories”, Nucl. Phys. B, 79 (1974), 413–421 | DOI

[12] Jones D. R. T., “Charge renormalization in a supersymmetric Yang–Mills theory”, Phys. Lett. B, 72 (1977), 199–200 | DOI

[13] Avdeev L. V., Tarasov O. V., Vladimirov A. A., “Vanishing of the three loop charge renormalization function in a supersymmetric gauge theory”, Phys. Lett. B, 96 (1980), 94–96 | DOI

[14] Sohnius M. F., West P. C., “Conformal invariance in $N=4$ supersymmetric Yang–Mills theory”, Phys. Lett. B, 100 (1981), 245–250 | DOI

[15] Siegel W., “Supersymmetric dimensional regularization via dimensional reduction”, Phys. Lett. B, 84 (1979), 193–196 | DOI | MR

[16] Krivoshchekov V. K., “Invariant regularizations for supersymmetric gauge theories”, Teor. Mat. Fiz., 36:3 (1978), 291–302 (in Russian) | MR

[17] West P. C., “Higher derivative regulation of supersymmetric theories”, Nucl. Phys. B, 268 (1986), 113–124 | DOI | MR

[18] Theor. Math. Phys., 139:2 (2004), 599–608 ; arXiv:hep-th/0305128 | DOI | MR | Zbl

[19] Theor. Math. Phys., 135:3 (2003), 673–684 ; arXiv:hep-th/0208006 | DOI | MR | Zbl

[20] Slavnov A. A., “Universal gauge invariant renormalization”, Phys. Lett. B, 518 (2001), 195–200 | DOI | Zbl

[21] Martin C. P., Ruiz Ruiz F., “Higher covariant derivative Pauli–Villars regularization does not lead to a consistent QCD”, Nucl. Phys. B, 436 (1995), 545–581 ; arXiv:hep-th/9410223 | DOI

[22] Bakeyev T. D., Slavnov A. A., “Higher covariant derivative regularization revisited”, Mod. Phys. Lett. A, 11 (1996), 1539–1554 ; arXiv:hep-th/9601092 | DOI

[23] Asorey M., Falceto F., “On the consistency of the regularization of gauge theories by high covariant derivatives”, Phys. Rev. D, 54 (1996), 5290–5301 ; arXiv:hep-th/9502025 | DOI

[24] Lee B. W., “Transformation properties of proper vertices in gauge theories”, Phys. Lett. B, 46 (1973), 214–216 ; Lee B. W., “Renormalization of gauge theories: unbroken and broken”, Phys. Rev. D, 9 (1974), 933–946 ; Zinn–Justin J., Renormalization of gauge theories, Lecture Note in Physics, 37, Springer Verlag, Berlin, 1975 | DOI | DOI | MR

[25] Peskin M. E., Schroeder D. V., An introduction to quantum field theory, Addison-Wesley, 1995 | MR

[26] Siegel W., “Inconsistency of supersymmetric dimensional regularization”, Phys. Lett. B, 94 (1980), 37–40 | DOI | MR

[27] Collins J. C., Duncan A., Joglekar S. D., “Trace and dilatation anomalies in gauge theories”, Phys. Rev. D, 16 (1977), 438–449 | DOI

[28] Bern Z., Dixon L. J., Smirnov V. A., “Iteration of planar amplitudes in maximally supersymmetric Yang–Mills theory at three loops and beyond”, Phys. Rev. D, 72 (2005), 085001, 27 pp., ages ; arXiv:hep-th/0505205 | DOI | MR