@article{SIGMA_2006_2_a0,
author = {Oksana Ye. Hentosh},
title = {Lax {Integrable} {Supersymmetric} {Hierarchies} on {Extented} {Phase} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a0/}
}
Oksana Ye. Hentosh. Lax Integrable Supersymmetric Hierarchies on Extented Phase Spaces. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a0/
[1] Adler M., “On a trace functional for formal pseudo-differential operators and the symplectic structures of a Korteweg–de Vries equation”, Invent. Math., 50:2 (1979), 219–248 | MR | Zbl
[2] Lax P. D., “Periodic solutions of the KdV equation”, Comm. Pure Appl. Math., 28 (1975), 141–188 | MR | Zbl
[3] Novikov S. P. (ed.), Soliton theory: method of the inverse problem, Nauka, Moscow, 1980 (in Russian)
[4] Prykarpatsky A. K., Mykytiuk I. V., Algebraic integrability of nonlinear dynamical systems on manifolds: classical and quantum aspects, Kluwer Academic Publishers, Dordrecht–Boston–London, 1998 | MR | Zbl
[5] Blaszak M., Multi-Hamiltonian theory of dynamical systems, Springer, Verlag–Berlin–Heidelberg, 1998 | MR | Zbl
[6] Manin Yu. I., Radul A. O., “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Comm. Math. Phys., 98 (1985), 65–77 | DOI | MR | Zbl
[7] Oevel W., Popowicz Z., “The bi-Hamiltonian structure of fully supersymmetric Korteweg–de Vries systems”, Comm. Math. Phys., 139 (1991), 441–460 | DOI | MR | Zbl
[8] Semenov-Tian-Shansky M. A., “What is the $r$-matrix?”, Funct. Anal. Appl., 17:4 (1983), 17–33 (in Russian)
[9] Oevel W., “$R$-structures, Yang–Baxter equations and related involution theorems”, J. Math. Phys., 30:5 (1989), 1140–1149 | DOI | MR | Zbl
[10] Oevel W., Strampp W., “Constrained KP hierarchy and bi-Hamiltonian structures”, Comm. Math. Phys., 157 (1993), 51–81 | DOI | MR | Zbl
[11] Prykarpatsky Ya. A., “Structure of integrable Lax flows on nonlocal manifolds: dynamical systems with sources”, Math. Methods and Phys.-Mech. Fields, 40:4 (1997), 106–115 (in Ukrainian) | MR
[12] Prykarpatsky A. K., Hentosh O. Ye., “The Lie-algebraic structure of $(2+1)$-dimensional Lax type integrable nonlinear dynamical systems”, Ukrainian Math. J., 56:7 (2004), 939–946 | MR | Zbl
[13] Nissimov E., Pacheva S., “Symmetries of supersymmetric integrable hierarchies of KP type”, J. Math. Phys., 43:5 (2002), 2547–2586 ; arXiv:nlin.SI/0102010 | DOI | MR | Zbl
[14] Berezin F. A., Introduction to algebra and analysis with anticommuting variables, Moscow Univ., 1983 (in Russian) | MR
[15] Shander V. N., “Analogues of the Frobenius and Darboux theorems”, Reports of Bulgarian Academy of Sciences, 36:3 (1983), 309–311 | MR
[16] Ablowitz M. J., Segur H., Solitons and the inverse scattering transform, SIAM, Philadelphia, 1981 | MR | Zbl
[17] Kulish P. P., Lipovsky V. D., “On Hamiltonian interpretation of the inverse problem method for the Davey–Stewartson equation”, LOMI Proceedings, 161, Nauka, Leningrad, 1987, 54–71 (in Russian) | MR
[18] Prykarpatsky A. K., Hentosh O. E., Blackmore D. L., “The finite-dimensional Moser type reductions of modified Boussinesq and super-Korteweg–de Vries Hamiltonian systems via the gradient-holonomic algorithm and the dual moment maps. I”, J. Nonlinear Math. Phys., 4:3–4 (1997), 455–469 | DOI | MR | Zbl
[19] Prykarpatsky A. K., Blackmore D., Strampp W., Sydorenko Yu., Samuliak R., “Some remarks on Lagrangian and Hamiltonian formalism, related to infinite-dimensional dynamical systems with symmetries”, Condensed Matter Phys., 6 (1995), 79–104
[20] Sato M., “Soliton equations as dynamical systems on infinite Grassmann manifolds”, RIMS Kokyuroku, Kyoto Univ., 439 (1981), 30–40
[21] Reiman A. G., Semenov-Tian-Shansky M. A., “The Hamiltonian structure of Kadomtsev–Petviashvili type equations”, LOMI Proceedings, 164, Nauka, Leningrad, 1987, 212–227 (in Russian)
[22] Prykarpatsky A. K., Samoilenko V. Hr., Andrushkiw R. I., Mitropolsky Yu. O., Prytula M. M., “Algebraic structure of the gradient-holonomic algorithm for Lax integrable nonlinear systems. I”, J. Math. Phys., 35:4 (1994), 1763–1777 | DOI | MR | Zbl