A Gentle (without Chopping) Approach to the Full Kostant–Toda Lattice
Symmetry, integrability and geometry: methods and applications, Tome 1 (2005) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we propose a new algorithm for obtaining the rational integrals of the full Kostant–Toda lattice. This new approach is based on a reduction of a bi-Hamiltonian system on $gl(n,{\mathbb R})$. This system was obtained by reducing the space of maps from $Z_n$ to $GL(n,{\mathbb R})$ endowed with a structure of a pair of Lie-algebroids.
Keywords: full Kostant–Toda lattice; integrability; bi-Hamiltonian structure.
@article{SIGMA_2005_1_a9,
     author = {Pantelis A. Damianou and Franco Magri},
     title = {A {Gentle} (without {Chopping)} {Approach} to the {Full} {Kostant{\textendash}Toda} {Lattice}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2005},
     volume = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a9/}
}
TY  - JOUR
AU  - Pantelis A. Damianou
AU  - Franco Magri
TI  - A Gentle (without Chopping) Approach to the Full Kostant–Toda Lattice
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2005
VL  - 1
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a9/
LA  - en
ID  - SIGMA_2005_1_a9
ER  - 
%0 Journal Article
%A Pantelis A. Damianou
%A Franco Magri
%T A Gentle (without Chopping) Approach to the Full Kostant–Toda Lattice
%J Symmetry, integrability and geometry: methods and applications
%D 2005
%V 1
%U http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a9/
%G en
%F SIGMA_2005_1_a9
Pantelis A. Damianou; Franco Magri. A Gentle (without Chopping) Approach to the Full Kostant–Toda Lattice. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a9/

[1] Bogoyavlensky O. I., “On perturbations of the periodic Toda lattice”, Comm. Math. Phys., 51 (1976), 201–209 | DOI | MR

[2] Constantinides K., Generalized full Kostant–Toda lattices, Master Thesis, Department of Mathematics and Statistics, University of Cyprus, 2003

[3] Damianou P. A., Paschalis P., Sophocleous C., “A tri-Hamiltonian formulation of the full Kostant–Toda lattice”, Lett. Math. Phys., 34 (1995), 17–24 | DOI | MR | Zbl

[4] Damianou P. A., “Multiple Hamiltonian structure of Bogoyavlensky–Toda lattices”, Reviews Math. Phys., 16 (2004), 175–241 | DOI | MR | Zbl

[5] Deift P. A., Li L. C., Nanda T., Tomei C., “The Toda lattice on a generic orbit is integrable”, Comm. Pure Appl. Math., 39 (1986), 183–232 | DOI | MR | Zbl

[6] Ercolani N. M., Flaschka H., Singer S., “The Geometry of the full Kostant–Toda lattice”, Integrable systems, Progress in Mathematics Series, 115, Birkhäuser, Boston, MA, 1993, 181–225 | MR | Zbl

[7] Falqui G., Magri F., Pedroni M., “Bi-Hamiltonian geometry, Darboux coverings, and linearization of the KP hierarchy”, Comm. Math. Phys., 197 (1998), 303–324 | DOI | MR | Zbl

[8] Faybusovich L., Gekhtman M., “Elementary Toda orbits and integrable lattices”, J. Math. Phys., 41 (2000), 2905–2921 | DOI | MR | Zbl

[9] Flaschka H., “On the Toda lattice”, Phys. Rev., 9 (1974), 1924–1925 | MR | Zbl

[10] Flaschka H., “On the Toda lattice. II. Inverse-scattering solution”, Progr. Theor. Phys., 51 (1974), 703–716 | DOI | MR | Zbl

[11] Flaschka H., “Integrable systems and torus actions”, Lectures on integrable systems (Sophia-Antipolis, 1991), World Sci. Publ., River Edge, NJ, 1994, 43–101 | MR

[12] Fokas A. S., Fuchssteiner B., “The Hierarchy of the Benjamin–Ono equations”, Phys. Lett. A, 86 (1981), 341–345 | DOI | MR

[13] Fuchssteiner B., “Master symmetries and higher order time-dependent symmetries and conserved densities of nonlinear evolution equations”, Progr. Theor. Phys., 70 (1983), 1508–1522 | DOI | MR | Zbl

[14] Gelfand I. M., Zakharevich I., “On the local geometry of a bi-Hamiltonian structure”, The Gelfand Mathematical Seminars 1990–1992, eds. L. Corvin et al., Birkhäuser, Boston, 1993, 51–112 | MR | Zbl

[15] Henon M., “Integrals of the Toda lattice”, Phys. Rev. B, 9 (1974), 1921–1923 | DOI | MR | Zbl

[16] Kostant B., “The solution to a generalized Toda lattice and representation theory”, Adv. Math., 34 (1979), 195–338 | DOI | MR | Zbl

[17] Kupershmidt B., Discrete Lax equations and differential-difference calculus, Astérisque, 123, Société Mathématique de France, Paris, 1985, 212 | MR | Zbl

[18] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl

[19] Manakov S., “Complete integrability and stochastization of discrete dynamical systems”, Zh. Exp. Teor. Fiz., 67 (1974), 543–555 | MR

[20] Meucci A., “Compatible Lie algebroids and the periodic Toda lattice”, J. Geom. Phys., 35 (2000), 273–287 | DOI | MR | Zbl

[21] Meucci A., “Toda equations, bi-Hamiltonian systems, and compatible Lie algebroids”, Math. Phys. Analysis Geom., 4 (2001), 131–146 | DOI | MR | Zbl

[22] Moser J., “Finitely many mass points on the line under the influence of an exponential potential – an integrable system”, Lect. Notes Phys., 38 (1976), 97–101 | MR

[23] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl

[24] Singer S., The geometry of the full Toda lattice, Ph.D. Dissertation, Courant Institute, 1991

[25] Toda M., “One-dimensional dual transformation”, J. Phys. Soc. Japan, 22 (1967), 431–436 | DOI