@article{SIGMA_2005_1_a8,
author = {Renat Zhdanov and Victor Lahno},
title = {Group {Classification} of the {General} {Evolution} {Equation:} {Local} and {Quasilocal} {Symmetries}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2005},
volume = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a8/}
}
TY - JOUR AU - Renat Zhdanov AU - Victor Lahno TI - Group Classification of the General Evolution Equation: Local and Quasilocal Symmetries JO - Symmetry, integrability and geometry: methods and applications PY - 2005 VL - 1 UR - http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a8/ LA - en ID - SIGMA_2005_1_a8 ER -
Renat Zhdanov; Victor Lahno. Group Classification of the General Evolution Equation: Local and Quasilocal Symmetries. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a8/
[1] Ovsiannikov L. V., Group analysis of differential equations, Academic Press, New York, 1982 | MR | Zbl
[2] Bluman G., Cole J., Similarity methods for differential equations, Springer, Berlin, 1974 | MR | Zbl
[3] Olver P., Applications of Lie groups to differential equations, Springer, New York, 1986 | MR
[4] Fushchych W., Zhdanov R., Symmetries and exact solutions of nonlinear spinor equations, Mathematical Ukraina Publisher, Kyiv, 1997
[5] Ovsiannikov L. V., “Group properties of nonlinear heat equation”, Dokl. AN SSSR, 125 (1959), 492–495 (in Russian)
[6] Dorodnitsyn V. A., “On invariant solutions of non-linear heat equation with a source”, Zhurn. Vych. Matem. Matem. Fiziki, 22 (1982), 1393–1400 (in Russian) | MR | Zbl
[7] Oron A., Rosenau Ph., “Some symmetries of the nonlinear heat and wave equations”, Phys. Lett. A, 118 (1986), 172–176 | DOI | MR | Zbl
[8] Akhatov I. Sh., Gazizov R. K., Ibragimov N. H., “Group classification of equations of nonlinear filtration”, Dokl. AN SSSR, 293 (1987), 1033–1035 | MR | Zbl
[9] Edwards M. P., “Classical symmetry reductions of nonlinear diffusion-convection equations”, Phys. Lett. A, 190 (1994), 149–154 | DOI | MR | Zbl
[10] Yung C. M., Verburg K., Baveye P., “Group classification and symmetry reductions of the non-linear diffusion-convection equation $u_t=(D(u)u_x)_x-K'(u)u_x$”, Int. J. Non-Linear Mech., 29 (1994), 273–278 | DOI | MR | Zbl
[11] Pallikaros C., Sophocleous C., “On point transformations of generalized nonlinear diffusion equations”, J. Phys. A: Math. Gen., 28 (1995), 6459–6465 | DOI | MR | Zbl
[12] Gandarias M. L., “Classical point symmetries of a porous medium equation”, J. Phys. A: Math. Gen., 29 (1996), 607–633 | DOI | MR | Zbl
[13] Cherniha R., Serov M., “Symmetries, ansätze and exact solutions of nonlinear second-order evolutions equations with convection terms”, European J. Appl. Math., 9 (1998), 527–542 | DOI | MR | Zbl
[14] El-labany S. K., Elhanbaly A. M., Sabry R., “Group classification and symmetry reduction of variable coefficient nonlinear diffusion-convection equation”, J. Phys A: Math. Gen., 35 (2002), 8055–8063 | DOI | MR | Zbl
[15] Güngör F., “Group classification and exact solutions of a radially symmetric porous-medium equation”, Int. J. Non-Linear Mech., 37 (2002), 245–255 | DOI | MR | Zbl
[16] Reid G. J., “Finding abstract Lie symmetry algebras of differential equations without integrating determining equations”, European J. Appl. Math., 2 (1991), 319–340 | DOI | MR | Zbl
[17] Mubarakzjanov G. M., “On solvable Lie algebras”, Izv. Vyssh. Uchebn. Zaved. Matematika, 1963, no. 1, 114–123 (in Russian) | MR
[18] Mubarakzjanov G. M., “The classification of the real structure of five-dimensional Lie algebras”, Izv. Vyssh. Uchebn. Zaved. Matematika, 1963, no. 3(34), 99–106 (in Russian) | MR
[19] Fushchych W. I., “Symmetry in mathematical physics problems”, Algebraic-Theoretical Studies in Mathematical Physics, Inst. of Math. Acad. of Sci. Ukraine, Kyiv, 1981, 6–28
[20] Gagnon L., Winternitz P., “Symmetry classes of variable coefficient nonlinear Schrödinger equations”, J. Phys. A: Math. Gen., 26 (1993), 7061–7076 | DOI | MR | Zbl
[21] Zhdanov R. Z., Roman O. V., “On preliminary symmetry classification of nonlinear Schrödinger equation with some applications of Doebner–Goldin models”, Rep. Math. Phys., 45 (2000), 273–291 | DOI | MR | Zbl
[22] Zhdanov R. Z., Lahno V. I., “Group classification of heat conductivity equations with a nonlinear source”, J. Phys. A: Math. Gen., 32 (1999), 7405–7418 | DOI | MR | Zbl
[23] Basarab-Horwath P., Lahno V., Zhdanov R., “The structure of Lie algebras and the classification problem for partial differential equations”, Acta Appl. Math., 69 (2001), 43–94 | DOI | MR | Zbl
[24] Güngör F., Lagno V. I., Zhdanov R. Z., “Symmetry classification of KdV-type nonlinear evolution equations”, J. Math. Phys., 45 (2004), 2280–2313 | DOI | MR | Zbl
[25] Lahno V., Zhdanov R., “Group classification of nonlinear wave equations”, J. Math. Phys., 46 (2005), 053301, 37 pp., ages | DOI | MR | Zbl
[26] Lie S., “On integration of a class of linear differential equations by means of definite integrals”, Arch. Math., 6 (1981), 328–368 (in German)
[27] Akhatov I. S., Gazizov R. K., Ibragimov N. K., “Nonlocal symmetries: A heuristic approach”, J. Soviet Math., 55 (1991), 1401–1450 | DOI | MR
[28] Meirmanov A. M., Pukhnachov V. M., Shmarev S. I., Evolution equations and Lagrangian coordinates, Walter de Gruyter, Berlin, 1997 | MR