@article{SIGMA_2005_1_a7,
author = {Anatoliy U. Klimyk},
title = {Spectra of {Observables} in the $q${-Oscillator} and $q${-Analogue} of the {Fourier} {Transform}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2005},
volume = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a7/}
}
Anatoliy U. Klimyk. Spectra of Observables in the $q$-Oscillator and $q$-Analogue of the Fourier Transform. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a7/
[1] Biedenharn L. C., “The quantum group $SU_q(2)$ and a $q$-analogue of the boson operators”, J. Phys. A: Math. Gen., 22 (1989), L873–L879 | DOI | MR
[2] Macfarlane A. J., “On $q$-analogues of the quantum harmonic oscillator and the quantum group $SU_q(2)$”, J. Phys. A: Math. Gen., 22 (1989), 4581–4588 | DOI | MR | Zbl
[3] Damaskinsky E. V., Kulish P. P., “Deformed oscillators and their applications”, Zap. Nauch. Sem. LOMI, 189, 1991, 37–74 | MR
[4] Klimyk A., Schmüdgen K., Quantum groups and their representations, Springer, Berlin, 1997 | MR
[5] Klimyk A. U., Schempp W., “Classical and quantum Heisenberg groups, their representations and applications”, Acta Appl. Math., 45 (1986), 143–194 | DOI | MR
[6] Burban I. M., Klimyk A. U., “Representations of the quantum algebra $U_q(\mathrm{su}_{1,1})$”, J. Phys. A: Math. Gen., 26 (1993), 2139–2151 | DOI | MR | Zbl
[7] Burban I. M., Klimyk A. U., “On spectral properties of $q$-oscillator operators”, Lett. Math. Phys., 29 (1993), 13–18 | DOI | MR | Zbl
[8] Chung W.-S., Klimyk A. U., “On position and momentum operators in the $q$-oscillator”, J. Math. Phys., 37 (1996), 917–932 | DOI | MR | Zbl
[9] Borzov V. V., Damaskinsky E. V., Kulish P. P., “On position operator spectral measure for deformed oscillator in the case of indetermine Hamburger moment problem”, Rev. Math. Phys., 12 (2001), 691–710 | MR
[10] Askey R., “Continuous $q$-Hermite polynomials when $q>1$”, $q$-Series and Partitions, ed. D. Stanton, Springer, Berlin, 1998, 151–158 | MR
[11] Klimyk A. U., “On position and momentum operators in the $q$-oscillator”, J. Phys. A: Math. Gen., 38 (2005), 4447–4458 | DOI | MR | Zbl
[12] Gasper G., Rahman M., Basic hypergeometric functions, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[13] Berezanskii Yu. M., Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1969
[14] Shohat J., Tamarkin J. D., The problem of moments, American Mathematical Society, Providence, R.I., 1943 | MR | Zbl
[15] Simon B., “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137 (1998), 82–203 | DOI | MR | Zbl
[16] Akhiezer N. I., The classical moment problem, Hafner, New York, NY, 1965
[17] Akhiezer N. I., Glazman I. M., The theory of linear operators in Hilbert spaces, Ungar, New York, NY, 1961 | Zbl
[18] Ciccoli N., Koelink E., Koornwinder T. H., “$q$-Laguerre polynomials and big $q$-Bessel functions and their orthogonality relations”, Methods of Applied Analysis, 6 (1999), 109–127 | MR | Zbl
[19] Ismail M. E. R., Masson D. R., “$q$-Hermite polynomials, biorthogonal functions, and $q$-beta integrals”, Trans. Amer. Math. Soc., 346 (1994), 63–116 | DOI | MR | Zbl
[20] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Delft University of Technology Report 98–17
[21] Santilli R. M., “Imbedding of Lie algebras in nonassociative structures”, Nuovo Cim. A, 51 (1967), 570–576 | DOI | MR | Zbl
[22] Askey R., Atakishiyev N. M., Suslov S. K., “An analog of the Fourier transformation for a $q$-harmonic oscillator”, Symmetries in Science VI, ed. B. Gruber, Plenum Press, New York, 1993, 57–64 | MR