@article{SIGMA_2005_1_a6,
author = {Alexander Shapovalov and Andrey Trifonov and Alexander Lisok},
title = {Exact {Solutions} and {Symmetry} {Operators} for the {Nonlocal} {Gross{\textendash}Pitaevskii} {Equation} with {Quadratic} {Potential}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2005},
volume = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a6/}
}
TY - JOUR AU - Alexander Shapovalov AU - Andrey Trifonov AU - Alexander Lisok TI - Exact Solutions and Symmetry Operators for the Nonlocal Gross–Pitaevskii Equation with Quadratic Potential JO - Symmetry, integrability and geometry: methods and applications PY - 2005 VL - 1 UR - http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a6/ LA - en ID - SIGMA_2005_1_a6 ER -
%0 Journal Article %A Alexander Shapovalov %A Andrey Trifonov %A Alexander Lisok %T Exact Solutions and Symmetry Operators for the Nonlocal Gross–Pitaevskii Equation with Quadratic Potential %J Symmetry, integrability and geometry: methods and applications %D 2005 %V 1 %U http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a6/ %G en %F SIGMA_2005_1_a6
Alexander Shapovalov; Andrey Trifonov; Alexander Lisok. Exact Solutions and Symmetry Operators for the Nonlocal Gross–Pitaevskii Equation with Quadratic Potential. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a6/
[1] Cornell E. A., Wieman C. E., “Nobel lecture: Bose–Einstein condensation in a dilute gas, the first 70 years some recent experiments”, Rev. Mod. Phys., 74 (2002), 875–893 | DOI
[2] Pitaevskii L. P., “Vortex lines in an imperfect Bose gas”, Zh. Eksper. Teor. Fiz., 40 (1961), 646–651 (in Russian)
[3] Gross E. P., “Structure of a quantized vortex in boson systems”, Nuovo Cimento, 20:3 (1961), 454–477 | DOI | MR | Zbl
[4] Kivshar Y. S., Pelinovsky D. E., “Self-focusing and transverse instabilities of solitary waves”, Phys. Rep., 331:4 (2000), 117–195 | DOI | MR
[5] Bang O., Krolikowski W., Wyller J., Rasmussen J. J., Collapse arrest and soliton stabilization in nonlocal nonlinear media, arXiv:nlin.PS/0201036
[6] Sov. Phys. JETP, 34 (1971), 62–69 | MR
[7] Plenum, New York, 1984 | MR | Zbl
[8] Academic Press, New York, 1982 | MR
[9] Anderson R. L., Ibragimov N. H., Lie–Bäcklund transformations in applications, SIAM, Philadelphia, 1979 | MR
[10] Olver P. J., Application of Lie groups to differential equations, Springer, New York, 1986 | MR
[11] Fushchich W. I., Shtelen W. M., Serov N. I., Symmetry analysis and exact solutions of equations of nonlinear mathematical physics, Kluwer, Dordrecht, 1993 | MR | Zbl
[12] Fushchich W. I., Nikitin A. G., Symmetries of equations of quantum mechanics, Allerton Press Inc., New York, 1994 | MR | Zbl
[13] Belov V. V., Trifonov A. Yu., Shapovalov A. V., “The trajectory-coherent approximation and the system of moments for the Hartree type equation”, Int. J. Math. and Math. Sci., 32:6 (2002), 325–370 | DOI | MR | Zbl
[14] Theor. Math. Phys., 130:3 (2002), 391–418 | DOI | MR | Zbl
[15] Shapovalov A. V., Trifonov A. Yu., Lisok A. L., “Semiclassical approach to the geometric phase theory for the Hartree type equation”, Proceedinds of Fifth International Conference “Symmetry in Nonlinear Mathematical Physics”, Part 3 (June 23–29, 2003, Kyiv), Proceedings of Institute of Mathematics, 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych and I. A. Yehorchenko, Kyiv, 2004, 1454–1465 | MR | Zbl
[16] Lisok A. L., Trifonov A. Yu., Shapovalov A. V., “The evolution operator of the Hartree-type equation with a quadratic potential”, J. Phys. A: Math. Gen., 37 (2004), 4535–4556 | DOI | MR | Zbl
[17] Nonlinear Poisson brackets: geometry and quantization, Translations of Mathematical Monographs, 119, Amer. Math. Soc., Providence, RI, 1993 | MR | MR | Zbl | Zbl
[18] The complex WKB method for nonlinear equations. I. Linear theory, Birkhauser Verlag, Basel–Boston–Berlin, 1994 | MR | Zbl
[19] Theor. Math. Phys., 92:2 (1992), 843–868 | DOI | MR
[20] Ehrenfest P., “Bemerkung über die angenherte Gültigkeit der klassishen Mechanik innerhalb der Quanten Mechanik”, Zeits. Phys., 45 (1927), 455–457 | DOI | Zbl
[21] Malkin M. A., Manko V. I., Dynamic symmetries and coherent states of quantum systems, Nauka, Moscow, 1979 (in Russian)
[22] Perelomov A. M., Generalized coherent states and their application, Springer-Verlag, Berlin, 1986 | MR
[23] Meirmanov A. M., Pukhnachov V. V., Shmarev S. I., Evolution equations and Lagrangian coordinates, Walter de Gruyter, New York–Berlin, 1994 | MR