@article{SIGMA_2005_1_a27,
author = {William H. Klink},
title = {Representations of $U(2\infty)$ and the {Value} of the {Fine} {Structure} {Constant}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2005},
volume = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a27/}
}
William H. Klink. Representations of $U(2\infty)$ and the Value of the Fine Structure Constant. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a27/
[1] Klink W. H., “Point form relativistic quantum mechanics and electromagnetic form factors”, Phys. Rev. C, 58 (1998), 3587–3604 | DOI
[2] Keister B. D., Polyzou W. N., “Relativistic Hamiltonian dynamics in nuclear and particle physics”, Advances Nuclear Physics, 20, ed. J. W. Negele and E. W. Vogt, Plenum, New York, 1991, 225–479
[3] Barut A. O., Ra̧czka R., Theory of group representations and applications, Polish Scientific Publishers, Warsaw, 1977 | MR
[4] Tung W., Group theory in physics, World Scientific, Singapore, 1985 | MR
[5] Klink W. H., “Relativistic simultaneously coupled multiparticle states”, Phys. Rev. C, 58 (1998), 3617–3626 | DOI
[6] Zhelobenko D. P., Compact Lie groups and their representations, American Mathematical Society, Providence, R.I., 1973 | MR | Zbl
[7] Bargmann V., “On a Hilbert space of analytic functions and an associated integral transform”, Comm. Pure Appl. Math., 16 (1961), 187–214 | DOI | MR