Integrable Anisotropic Evolution Equations on a Sphere
Symmetry, integrability and geometry: methods and applications, Tome 1 (2005) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

V.V. Sokolov's modifying symmetry approach is applied to anisotropic evolution equations of the third order on the $n$-dimensional sphere. The main result is a complete classification of such equations. Auto-Bäcklund transformations are also found for all equations.
Keywords: evolution equation; equation on a sphere; integrability; symmetry classification; anisotropy; conserved densities; Bäcklund transformations.
@article{SIGMA_2005_1_a26,
     author = {Anatoly G. Meshkov and Maxim Ju. Balakhnev},
     title = {Integrable {Anisotropic} {Evolution} {Equations} on {a~Sphere}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2005},
     volume = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a26/}
}
TY  - JOUR
AU  - Anatoly G. Meshkov
AU  - Maxim Ju. Balakhnev
TI  - Integrable Anisotropic Evolution Equations on a Sphere
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2005
VL  - 1
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a26/
LA  - en
ID  - SIGMA_2005_1_a26
ER  - 
%0 Journal Article
%A Anatoly G. Meshkov
%A Maxim Ju. Balakhnev
%T Integrable Anisotropic Evolution Equations on a Sphere
%J Symmetry, integrability and geometry: methods and applications
%D 2005
%V 1
%U http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a26/
%G en
%F SIGMA_2005_1_a26
Anatoly G. Meshkov; Maxim Ju. Balakhnev. Integrable Anisotropic Evolution Equations on a Sphere. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a26/

[1] Theor. Math. Phys., 124:1 (2000), 909–917 | DOI | MR | Zbl

[2] Sokolov V. V., Wolf T., “Classification of integrable polynomial vector evolution equations”, J. Phys. A: Math. Gen., 34 (2001), 11139–11148 | DOI | MR | Zbl

[3] Sokolov V. V., Shabat A. B., “Classification of integrable evolution equations”, Mathematical Physics Reviews, 4 (1984), 221–280 | MR | Zbl

[4] Mikhailov A. V., Shabat A. B., Yamilov R. I., “The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems”, Russian Math. Surveys, 42:4 (1987), 1–63 | DOI | MR

[5] Mikhailov A. V., Shabat A. B., Sokolov V. V., “The symmetry approach to classification of integrable equations”, What is integrability?, Springer-Verlag, 1991, 115–184 | MR | Zbl

[6] Fokas A. S., “Symmetries and integrability”, Stud. Appl. Math., 77 (1987), 253–299 | MR | Zbl

[7] Theor. Math. Phys., 125:3 (2000), 1603–1661 | DOI | MR | Zbl

[8] Meshkov A. G., Sokolov V. V., “Integrable evolution equations on the $N$-dimensional sphere”, Comm. Math. Phys., 232 (2002), 1–18 | DOI | MR | Zbl

[9] Theor. Math. Phys., 139:2 (2004), 609–622 | DOI | MR | Zbl

[10] Theor. Math. Phys., 142:1 (2005), 8–14 | DOI | MR | Zbl

[11] Chen H. H., Lee Y. C., Liu C. S., “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Phys. Scr., 20:3–4 (1979), 490–492 | DOI | MR | Zbl

[12] Meshkov A. G., “Necessary conditions of the integrability”, Inverse Problems, 10 (1994), 635–653 | DOI | MR | Zbl

[13] Balakhnev M. Ju., “The vector generalization of the Landau–Lifshitz equation: Bäcklund transformation and solutions”, Appl. Math. Lett., 18:12 (2005), 1363–1372 | DOI | MR | Zbl