Conservation Laws of Discrete Korteweg–de Vries Equation
Symmetry, integrability and geometry: methods and applications, Tome 1 (2005) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All three-point and five-point conservation laws for the discrete Korteweg–de Vries equations are found. These conservation laws satisfy a functional equation, which we solve by reducing it to a system of partial differential equations. Our method uses computer algebra intensively, because the determining functional equation is quite complicated.
Keywords: conservation laws; discrete equations; quad-graph.
@article{SIGMA_2005_1_a25,
     author = {Olexandr G. Rasin and Peter E. Hydon},
     title = {Conservation {Laws} of {Discrete} {Korteweg{\textendash}de~Vries} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2005},
     volume = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a25/}
}
TY  - JOUR
AU  - Olexandr G. Rasin
AU  - Peter E. Hydon
TI  - Conservation Laws of Discrete Korteweg–de Vries Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2005
VL  - 1
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a25/
LA  - en
ID  - SIGMA_2005_1_a25
ER  - 
%0 Journal Article
%A Olexandr G. Rasin
%A Peter E. Hydon
%T Conservation Laws of Discrete Korteweg–de Vries Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2005
%V 1
%U http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a25/
%G en
%F SIGMA_2005_1_a25
Olexandr G. Rasin; Peter E. Hydon. Conservation Laws of Discrete Korteweg–de Vries Equation. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a25/

[1] Adler V. E., Bobenko A. I., Suris Yu. B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543 ; arXiv:nlin.SI/0202024 | MR | Zbl

[2] Hirota R., “Nonlinear partial difference equations. I. A difference analog of the Korteweg–de Vries equation”, J. Phys. Soc. Japan, 43 (1977), 1423–1433 | MR

[3] Hydon P. E., “Conservation laws of partial difference equations with two independent variables”, J. Phys. A: Math. Gen., 34 (2001), 10347–10355 | DOI | MR | Zbl