Mots-clés : $S$-
@article{SIGMA_2005_1_a24,
author = {Jiri Patera},
title = {Compact {Simple} {Lie} {Groups} and {Their} $C$-, $S$-, and $E${-Transforms}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2005},
volume = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a24/}
}
Jiri Patera. Compact Simple Lie Groups and Their $C$-, $S$-, and $E$-Transforms. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a24/
[1] Patera J., Invited talk at the Sixth International Conference “Symmetry in Nonlinear Mathematical Physics”, June 20–26, 2005, Kyiv
[2] Atoyan A., Patera J., “Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization”, J. Math. Phys., 45 (2004), 2468–2491 | DOI | MR | Zbl
[3] Wang Zhongde, “Interpolation using type I discrete cosine transform”, Electron. Lett., 26 (1990), 1170–1171 | DOI
[4] Agbinya J. I., “Two dimensional interpolation of real sequences using the DCT”, Electron. Lett., 29 (1993), 204–205 | DOI
[5] Moody R. V., Patera J., “Computation of character decompositions of class functions on compact semisimple Lie groups”, Math. Comp., 48 (1987), 799–827 | DOI | MR | Zbl
[6] Moody R. V., Patera J., “Elements of finite order in Lie groups and their applications”, XIII Int. Colloq. on Group Theoretical Methods in Physics, eds. W. Zachary, World Scientific Publishers, Singapore, 1984, 308–318 | MR
[7] McKay W. G., Moody R. V., Patera J., “Decomposition of tensor products of $E_8$ representations”, Algebras Groups Geom., 3 (1986), 286–328 | MR | Zbl
[8] McKay W. G., Moody R. V., Patera J., “Tables of $E_8$ characters and decomposition of plethysms”, Lie Algebras and Related Topics, eds. D. J. Britten, F. W. Lemire and R. V. Moody, Amer. Math. Society, Providence, R.I., 1985, 227–264 | MR
[9] Grimm S., Patera J., “Decomposition of tensor products of the fundamental representations of $E_8$”, Advances in Mathematical Sciences: CRM's 25 Years, CRM Proc. Lecture Notes, 11, ed. L. Vinet, Amer. Math. Soc., Providence RI, 1997, 329–355 | MR | Zbl
[10] Patera J., Zaratsyan A., “Cosine transform generalized to Lie groups $SU(2)\times SU(2)$ and $O(5)$”, J. Math. Phys., 46 (2005), 053514, 25 pp., ages | DOI | MR | Zbl
[11] Patera J., Zaratsyan A., “Cosine transform generalized to Lie groups $SU(3)$ and $G(2)$”, J. Math. Phys., 46 (2005), 113506, 17 pp., ages | DOI | MR | Zbl
[12] Atoyan A., Patera J., Sahakian V., Akhperjanian A., “Fourier transform method for imaging atmospheric Cherenkov telescopes”, Astroparticle Phys., 23 (2005), 79–95 | DOI
[13] Patera J., “Orbit functions of compact semisimple Lie groups as special functions”, Proceedinds of Fifth International Conference “Symmetry in Nonlinear Mathematical Physics”, Part 3 (June 23–29, 2003, Kyiv), Proceedings of Institute of Mathematics, 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych and I. A. Yehorchenko, Kyiv, 2004, 1152–1160 | MR | Zbl
[14] Patera J., Algebraic solutions of the Neumann boundary value problems on fundamental region of a compact semisimple Lie group, Talk given at the Workshop on Group Theory and Numerical Methods (May 26–31, 2003, Montreal)
[15] Atoyan A., Patera J., Continuous extension of the discrete cosine transform, and its applications to data processing, Proceedings of the Workshop on Group Theory and Numerical Methods (May 26–31, 2003, Montreal)
[16] Klimyk A., Patera J., “Orbit functions”, Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 002, 57 pages | MR | Zbl
[17] Patera J., Zaratsyan A., The sine transform generalized to semisimple Lie groups rank 2, Preprint, 2005
[18] Kashuba I., Patera J., Zaratsyan A., The $E$-functions of compact semisimple Lie groups and their discretization, in preparation
[19] Bremner M. R., Moody R. V., Patera J., Tables of dominant weight multiplicities for representations of simple Lie algebras, Marcel Dekker, New York, 1985, 340 pp., ages | MR | Zbl
[20] Moody R. V., Patera J., Discrete and continuous orthogonality of $C$-, $S$-, and $E$-functions of a compact semisimple Lie group, in preparation