@article{SIGMA_2005_1_a23,
author = {Sibusiso Moyo and P. G. L. Leach},
title = {Symmetry {Properties} of {Autonomous} {Integrating} {Factors}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2005},
volume = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a23/}
}
Sibusiso Moyo; P. G. L. Leach. Symmetry Properties of Autonomous Integrating Factors. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a23/
[1] Bluman G. W., Kumei S., Symmetries and differential equations, Springer-Verlag, New York, 1989 | MR | Zbl
[2] Cheb-Terrab E. S., Roche A. D., “Integrating factors for second order ordinary differential equations”, J. Symbolic Comput., 27 (1999), 501–519 ; arXiv:math-ph/0002025 | DOI | MR | Zbl
[3] Leach P. G. L., Bouquet S.É., “Symmetries and integrating factors”, J. Nonlinear Math. Phys., 9, suppl. 2 (2002), 73–91 | DOI | MR
[4] Abraham-Shrauner B., “Hidden symmetries, first integrals and reduction of order of nonlinear ordinary differential equations”, J. Nonlinear Math. Phys., 9, suppl. 2 (2002), 1–9 | DOI | MR
[5] Head A., “LIE, a PC program for Lie analysis of differential equations”, Comput. Phys. Comm., 77 (1993), 241–248 | DOI | MR | Zbl
[6] Ermakov V., “Second-order differential equations. Conditions of complete integrability”, Universitetskie Izvestiya, Kiev, 1880, no. 9, 1–25, translated by A. O. Harin | MR
[7] Pinney E., “The nonlinear differential equation $y''(x)+p(x)y+cy^{-3}=0$”, Proc. Amer. Math. Soc., 1 (1950), 681 | DOI | MR | Zbl
[8] Lewis H. R., “Classical and quantum systems with time-dependent harmonic oscillator-type Hamiltonians”, Phys. Rev. Lett., 18 (1967), 510–512 | DOI
[9] Lewis H. R. Jr., “Motion of a time-dependent harmonic oscillator and of a charged particle in a time-dependent, axially symmetric, electromagnetic field”, Phys. Rev., 172 (1968), 1313–1315 | DOI
[10] Mahomed F. M., Leach P. G. L., “Symmetry Lie algebras of $n$th order ordinary differential equations”, J. Math. Anal. Appl., 151 (1990), 80–107 | DOI | MR | Zbl
[11] Mubarakzyanov G. M., “On solvable Lie algebras”, Izv. Vys. Uchebn. Zaved. Matematika, 1963, no. 1, 114–123 | MR | Zbl
[12] Mubarakzyanov G. M., “Classification of real structures of five-dimensional Lie algebras”, Izv. Vys. Uchebn. Zaved. Matematika, 1963, no. 3, 99–106 | MR | Zbl
[13] Mubarakzyanov G. M., “Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element”, Izv. Vys. Uchebn. Zaved. Matematika, 1963, no. 4, 104–116 | MR | Zbl
[14] Patera J., Sharp R. T., Winternitz P., “Invariants of real low dimension Lie algebras”, J. Math. Phys., 17 (1976), 986–994 | DOI | MR | Zbl
[15] Flessas G. P., Govinder K. S., Leach P. G. L., “Remarks on the symmetry Lie algebras of first integrals of scalar third order ordinary differential equations with maximal symmetry”, Bull. Greek Math. Soc., 36 (1994), 63–79 | MR | Zbl
[16] Flessas G. P., Govinder K. S., Leach P. G. L., “Characterisation of the algebraic properties of first integrals of scalar ordinary differential equations of maximal symmetry”, J. Math. Anal. Appl., 212 (1997), 349–374 | DOI | MR | Zbl
[17] Moyo S., Leach P. G. L., “Exceptional properties of second and third order ordinary differential equations of maximal symmetry”, J. Math. Anal. Appl., 252 (2000), 840–863 | DOI | MR | Zbl